Properties

Label 2.3_7e2_61.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 3 \cdot 7^{2} \cdot 61 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$8967= 3 \cdot 7^{2} \cdot 61 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 5 x^{2} + 51 x + 39 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 19 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 1 + 18\cdot 19 + 17\cdot 19^{2} + 16\cdot 19^{3} + 9\cdot 19^{4} + 12\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 8 + 12\cdot 19 + 13\cdot 19^{3} + 2\cdot 19^{4} + 7\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 13 + 10\cdot 19 + 18\cdot 19^{2} + 12\cdot 19^{3} + 12\cdot 19^{4} + 6\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 17 + 15\cdot 19 + 14\cdot 19^{3} + 12\cdot 19^{4} + 11\cdot 19^{5} +O\left(19^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3)(2,4)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)$ $-2$
$2$ $2$ $(1,3)(2,4)$ $0$
$2$ $2$ $(1,2)$ $0$
$2$ $4$ $(1,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.