Properties

Label 2.3_7e2_37e2.4t3.2c1
Dimension 2
Group $D_{4}$
Conductor $ 3 \cdot 7^{2} \cdot 37^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$201243= 3 \cdot 7^{2} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 79 x^{2} + 252 x + 1344 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 1 + 27\cdot 67 + 47\cdot 67^{2} + 6\cdot 67^{3} + 67^{4} + 23\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 15 + 55\cdot 67 + 18\cdot 67^{2} + 9\cdot 67^{3} + 20\cdot 67^{4} + 22\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 55 + 47\cdot 67 + 53\cdot 67^{2} + 52\cdot 67^{3} + 65\cdot 67^{4} + 38\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 64 + 3\cdot 67 + 14\cdot 67^{2} + 65\cdot 67^{3} + 46\cdot 67^{4} + 49\cdot 67^{5} +O\left(67^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.