Properties

Label 2.3_7e2_37.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 7^{2} \cdot 37 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$5439= 3 \cdot 7^{2} \cdot 37 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 14 x^{6} - 65 x^{5} + 241 x^{4} - 573 x^{3} + 1092 x^{2} - 1287 x + 1089 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_37.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 29 + 36\cdot 127 + 40\cdot 127^{2} + 53\cdot 127^{3} + 19\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 + 65\cdot 127 + 92\cdot 127^{2} + 61\cdot 127^{3} + 73\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 55 + 49\cdot 127 + 103\cdot 127^{2} + 101\cdot 127^{3} + 64\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 73 + 90\cdot 127 + 60\cdot 127^{2} + 4\cdot 127^{3} + 105\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 96 + 68\cdot 127 + 92\cdot 127^{2} + 30\cdot 127^{3} + 34\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 112 + 87\cdot 127 + 110\cdot 127^{2} + 75\cdot 127^{3} + 122\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 117 + 122\cdot 127 + 18\cdot 127^{2} + 118\cdot 127^{3} + 97\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 122 + 113\cdot 127 + 115\cdot 127^{2} + 61\cdot 127^{3} + 117\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,8)(4,6)(5,7)$
$(1,3)(2,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,7)(3,6)(4,8)$$-2$
$2$$2$$(1,2)(3,8)(4,6)(5,7)$$0$
$2$$2$$(1,3)(2,4)(5,6)(7,8)$$0$
$2$$4$$(1,4,5,8)(2,3,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.