Properties

Label 2.3_7e2_13e2.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 3 \cdot 7^{2} \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$24843= 3 \cdot 7^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 28 x^{2} - 48 x + 120 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 31 + 25\cdot 61 + 43\cdot 61^{2} + 60\cdot 61^{3} + 39\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 48 + 37\cdot 61 + 9\cdot 61^{2} + 22\cdot 61^{3} + 33\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 50 + 11\cdot 61 + 30\cdot 61^{2} + 3\cdot 61^{3} + 40\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 55 + 46\cdot 61 + 38\cdot 61^{2} + 35\cdot 61^{3} + 8\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.