Properties

Label 2.3_7e2_13.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 7^{2} \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1911= 3 \cdot 7^{2} \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 4 x^{6} - 23 x^{5} + 35 x^{4} - 65 x^{3} + 130 x^{2} - 169 x + 169 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 10 + 6\cdot 43 + 41\cdot 43^{2} + 6\cdot 43^{3} + 17\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 38\cdot 43 + 13\cdot 43^{2} + 6\cdot 43^{3} + 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 + 13\cdot 43 + 14\cdot 43^{2} + 24\cdot 43^{3} + 3\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 + 17\cdot 43 + 3\cdot 43^{2} + 2\cdot 43^{3} + 26\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 31 + 33\cdot 43 + 17\cdot 43^{2} + 25\cdot 43^{3} + 12\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 38 + 33\cdot 43 + 38\cdot 43^{2} + 26\cdot 43^{3} + 28\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 39 + 40\cdot 43 + 31\cdot 43^{2} + 26\cdot 43^{3} + 5\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 41 + 30\cdot 43 + 10\cdot 43^{2} + 10\cdot 43^{3} + 34\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,8)(5,7)$
$(1,3)(2,4)(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,7)(3,8)(4,6)$ $-2$
$2$ $2$ $(1,2)(3,6)(4,8)(5,7)$ $0$
$2$ $2$ $(1,3)(2,4)(5,8)(6,7)$ $0$
$2$ $4$ $(1,4,5,6)(2,3,7,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.