Basic invariants
| Dimension: | $2$ |
| Group: | $S_3 \times C_3$ |
| Conductor: | $1617= 3 \cdot 7^{2} \cdot 11 $ |
| Artin number field: | Splitting field of $f= x^{18} - 4 x^{17} + 7 x^{16} - 13 x^{15} + 73 x^{14} - 196 x^{13} + 456 x^{12} - 1442 x^{11} + 5024 x^{10} - 11878 x^{9} + 20482 x^{8} - 24026 x^{7} + 20896 x^{6} - 9772 x^{5} + 3997 x^{4} + 1484 x^{3} + 1519 x^{2} + 343 x + 49 $ over $\Q$ |
| Size of Galois orbit: | 2 |
| Smallest containing permutation representation: | $S_3\times C_3$ |
| Parity: | Odd |
| Determinant: | 1.3_7_11.6t1.2c1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{6} + 19 x^{3} + 16 x^{2} + 8 x + 3 $
Roots:
| $r_{ 1 }$ | $=$ | $ 5 a^{5} + 14 a^{4} + 8 a^{3} + 2 a^{2} + 9 a + 15 + \left(2 a^{5} + 20 a^{4} + 29 a^{3} + 28 a^{2} + 19 a + 15\right)\cdot 31 + \left(14 a^{5} + 25 a^{4} + 20 a^{3} + 9 a^{2} + 26 a + 6\right)\cdot 31^{2} + \left(16 a^{5} + 8 a^{4} + 22 a^{3} + 25 a + 18\right)\cdot 31^{3} + \left(3 a^{5} + 12 a^{4} + 3 a^{3} + 10 a^{2} + 7 a + 4\right)\cdot 31^{4} + \left(3 a^{5} + 28 a^{4} + 12 a^{3} + 4 a^{2} + 20 a + 26\right)\cdot 31^{5} + \left(2 a^{4} + 17 a^{3} + 25 a^{2} + 19 a + 19\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
| $r_{ 2 }$ | $=$ | $ 12 a^{5} + 22 a^{4} + 26 a^{3} + 18 a^{2} + 13 a + 8 + \left(29 a^{5} + 22 a^{4} + 30 a^{3} + 29 a^{2} + 19 a + 24\right)\cdot 31 + \left(17 a^{5} + 20 a^{4} + 24 a^{3} + 11 a^{2} + 8 a + 2\right)\cdot 31^{2} + \left(21 a^{5} + 8 a^{4} + 25 a^{3} + 21 a^{2} + 17 a + 8\right)\cdot 31^{3} + \left(5 a^{5} + 3 a^{4} + 3 a^{3} + 17 a^{2} + 17 a + 27\right)\cdot 31^{4} + \left(5 a^{5} + 2 a^{4} + 11 a^{3} + 11 a^{2} + 12 a + 23\right)\cdot 31^{5} + \left(7 a^{5} + 8 a^{4} + 28 a^{3} + 10 a^{2} + 20 a + 29\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
| $r_{ 3 }$ | $=$ | $ 26 a^{5} + 2 a^{4} + 9 a^{3} + 25 a^{2} + 15 a + 1 + \left(7 a^{5} + 12 a^{4} + 21 a^{3} + 24 a^{2} + 10 a + 18\right)\cdot 31 + \left(28 a^{5} + 2 a^{4} + 7 a^{3} + 6 a^{2} + 13 a + 10\right)\cdot 31^{2} + \left(4 a^{5} + 26 a^{4} + 28 a^{2} + 17 a + 16\right)\cdot 31^{3} + \left(14 a^{5} + 5 a^{4} + 26 a^{3} + 25 a^{2} + 17 a + 10\right)\cdot 31^{4} + \left(18 a^{5} + 28 a^{4} + 10 a^{3} + 10 a^{2} + 20 a + 25\right)\cdot 31^{5} + \left(5 a^{5} + 16 a^{4} + 28 a^{3} + 15 a^{2} + 4 a + 3\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
| $r_{ 4 }$ | $=$ | $ 10 a^{5} + 21 a^{4} + 17 a^{3} + 24 a^{2} + 14 a + 18 + \left(13 a^{5} + 25 a^{4} + a^{3} + 2 a^{2} + 3 a + 22\right)\cdot 31 + \left(23 a^{5} + 18 a^{4} + 12 a^{3} + 21 a^{2} + 25 a + 24\right)\cdot 31^{2} + \left(2 a^{5} + 12 a^{4} + 15 a^{3} + 2 a^{2} + 2 a + 22\right)\cdot 31^{3} + \left(4 a^{5} + 23 a^{4} + 27 a^{3} + 16 a + 15\right)\cdot 31^{4} + \left(26 a^{5} + a^{4} + 17 a^{3} + 28 a^{2} + 6 a + 16\right)\cdot 31^{5} + \left(6 a^{5} + 22 a^{4} + 13 a^{2} + 2 a + 30\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
| $r_{ 5 }$ | $=$ | $ 19 a^{5} + 25 a^{4} + 23 a^{3} + 24 a^{2} + 27 a + 2 + \left(30 a^{5} + 23 a^{4} + 10 a^{3} + 22 a^{2} + 2 a + 14\right)\cdot 31 + \left(19 a^{5} + 28 a^{4} + 18 a^{3} + 11 a^{2} + 27 a + 7\right)\cdot 31^{2} + \left(6 a^{5} + 2 a^{4} + 17 a^{3} + 22 a^{2} + 29 a + 23\right)\cdot 31^{3} + \left(8 a^{5} + 3 a^{4} + 18 a^{3} + 3 a^{2} + 3 a + 20\right)\cdot 31^{4} + \left(5 a^{5} + 15 a^{4} + 8 a^{3} + 9 a^{2} + 6 a + 29\right)\cdot 31^{5} + \left(27 a^{5} + 16 a^{4} + 9 a^{3} + 26 a^{2} + 12 a + 23\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
| $r_{ 6 }$ | $=$ | $ 15 a^{5} + 16 a^{4} + 9 a^{3} + 12 a^{2} + 24 a + 22 + \left(27 a^{5} + 9 a^{4} + 6 a^{3} + 27 a^{2} + 15 a + 26\right)\cdot 31 + \left(3 a^{5} + 14 a^{4} + 5 a^{3} + 8 a^{2} + 29 a + 30\right)\cdot 31^{2} + \left(25 a^{5} + 23 a^{4} + 22 a^{3} + 20 a^{2} + 25 a + 13\right)\cdot 31^{3} + \left(4 a^{5} + 18 a^{4} + 5 a^{3} + 14 a^{2} + 15 a + 7\right)\cdot 31^{4} + \left(6 a^{5} + 26 a^{4} + 26 a^{3} + 17 a^{2} + 13 a + 20\right)\cdot 31^{5} + \left(8 a^{5} + 27 a^{4} + 11 a^{3} + 11 a^{2} + 13 a + 8\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
| $r_{ 7 }$ | $=$ | $ 16 a^{5} + 30 a^{4} + 14 a^{3} + 30 a^{2} + 24 a + 24 + \left(23 a^{5} + 16 a^{4} + 21 a^{3} + 26 a^{2} + 8 a + 6\right)\cdot 31 + \left(12 a^{5} + 19 a^{4} + 25 a^{3} + 29 a^{2} + 30 a + 20\right)\cdot 31^{2} + \left(21 a^{5} + 19 a^{4} + 30 a^{3} + 4 a^{2} + 15 a + 30\right)\cdot 31^{3} + \left(12 a^{5} + 30 a^{4} + 8 a^{3} + a^{2} + 24 a + 5\right)\cdot 31^{4} + \left(8 a^{5} + 11 a^{4} + 22 a^{3} + 9 a^{2} + 21 a + 23\right)\cdot 31^{5} + \left(3 a^{5} + 13 a^{4} + 10 a^{3} + 22 a^{2} + 10 a + 27\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
| $r_{ 8 }$ | $=$ | $ 26 a^{5} + 12 a^{4} + 21 a^{3} + 13 a^{2} + 26 a + 4 + \left(a^{5} + 19 a^{4} + 21 a^{3} + 27 a^{2} + 14 a + 28\right)\cdot 31 + \left(12 a^{5} + 6 a^{4} + 8 a^{3} + 19 a^{2} + 6 a + 19\right)\cdot 31^{2} + \left(14 a^{5} + 8 a^{4} + 23 a^{3} + 18 a^{2} + a + 3\right)\cdot 31^{3} + \left(10 a^{5} + 7 a^{4} + 11 a^{3} + 4 a^{2} + 5 a + 1\right)\cdot 31^{4} + \left(20 a^{5} + 4 a^{4} + 25 a^{3} + 5 a^{2} + 20 a + 4\right)\cdot 31^{5} + \left(22 a^{5} + 29 a^{4} + 7 a^{3} + 30 a^{2} + 24 a + 23\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
| $r_{ 9 }$ | $=$ | $ 11 a^{5} + 14 a^{4} + 9 a^{3} + 4 a^{2} + 30 a + 5 + \left(22 a^{5} + 14 a^{4} + 3 a^{3} + 9 a^{2} + 29 a + 1\right)\cdot 31 + \left(18 a^{5} + 20 a^{4} + 5 a^{3} + 30 a^{2} + 10 a + 24\right)\cdot 31^{2} + \left(30 a^{5} + 20 a^{4} + 19 a^{3} + 19 a^{2} + 12\right)\cdot 31^{3} + \left(15 a^{5} + 30 a^{4} + 24 a^{3} + 24 a^{2} + 20 a + 11\right)\cdot 31^{4} + \left(12 a^{5} + 14 a^{4} + 24 a^{3} + 8 a^{2} + 24 a + 13\right)\cdot 31^{5} + \left(7 a^{5} + 3 a^{4} + 24 a^{3} + 16 a^{2} + 28 a + 21\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
| $r_{ 10 }$ | $=$ | $ 23 a^{5} + a^{4} + 15 a^{3} + 26 a^{2} + 22 a + 6 + \left(13 a^{5} + 30 a^{4} + 17 a^{3} + 2 a^{2} + 26\right)\cdot 31 + \left(17 a^{5} + 30 a^{4} + 7 a^{3} + 22 a^{2} + 10 a + 30\right)\cdot 31^{2} + \left(19 a^{5} + 26 a^{4} + 2 a^{3} + 27 a^{2} + a + 17\right)\cdot 31^{3} + \left(13 a^{5} + 8 a^{4} + 9 a^{3} + 3 a^{2} + 18 a + 3\right)\cdot 31^{4} + \left(12 a^{5} + 28 a^{3} + 23 a^{2} + 24 a + 4\right)\cdot 31^{5} + \left(21 a^{5} + 5 a^{4} + 3 a^{3} + 19 a^{2} + 19 a + 25\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
| $r_{ 11 }$ | $=$ | $ 19 a^{5} + 30 a^{4} + 15 a^{3} + 18 a^{2} + 28 a + 20 + \left(8 a^{5} + 3 a^{4} + 14 a^{3} + 15 a^{2} + 14 a\right)\cdot 31 + \left(a^{5} + 6 a^{4} + 7 a^{3} + 12 a^{2} + 22 a + 24\right)\cdot 31^{2} + \left(25 a^{5} + 24 a^{4} + 30 a^{3} + 27 a^{2} + 6 a + 16\right)\cdot 31^{3} + \left(24 a^{5} + 20 a^{4} + 27 a^{3} + 13 a^{2} + 22 a + 7\right)\cdot 31^{4} + \left(18 a^{5} + 19 a^{4} + 26 a^{3} + 14 a^{2} + 4 a + 28\right)\cdot 31^{5} + \left(20 a^{5} + 11 a^{4} + 16 a^{3} + 24 a^{2} + 4 a + 6\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
| $r_{ 12 }$ | $=$ | $ 10 a^{5} + a^{4} + 28 a^{3} + 28 a^{2} + 19 a + 28 + \left(4 a^{5} + 2 a^{4} + 29 a^{3} + 11 a^{2} + 9 a + 15\right)\cdot 31 + \left(a^{5} + 2 a^{3} + 11 a^{2} + 21 a + 18\right)\cdot 31^{2} + \left(16 a^{5} + 19 a^{4} + 9 a^{3} + 13 a^{2} + 4 a + 21\right)\cdot 31^{3} + \left(27 a^{5} + 25 a^{4} + 19 a^{3} + 16 a^{2} + 13 a + 29\right)\cdot 31^{4} + \left(5 a^{5} + 18 a^{4} + 6 a^{3} + 30 a^{2} + 29 a + 28\right)\cdot 31^{5} + \left(10 a^{5} + 13 a^{3} + 29 a^{2} + 22 a\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
| $r_{ 13 }$ | $=$ | $ 3 a^{5} + 24 a^{4} + 11 a^{3} + 27 a^{2} + 29 + \left(27 a^{5} + 13 a^{4} + 19 a^{3} + 9 a^{2} + 2 a + 11\right)\cdot 31 + \left(23 a^{5} + 26 a^{4} + 13 a^{3} + 16 a^{2} + 4 a + 15\right)\cdot 31^{2} + \left(17 a^{5} + 26 a^{4} + 26 a^{3} + 7 a^{2} + 17 a + 28\right)\cdot 31^{3} + \left(21 a^{5} + 22 a^{4} + 11 a^{3} + 25 a^{2} + 30 a + 8\right)\cdot 31^{4} + \left(23 a^{5} + 5 a^{4} + 4 a^{3} + 28 a^{2} + 14 a + 2\right)\cdot 31^{5} + \left(25 a^{3} + 9 a^{2} + 30 a + 21\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
| $r_{ 14 }$ | $=$ | $ 25 a^{5} + 20 a^{4} + 5 a^{3} + 27 a^{2} + 18 a + 14 + \left(9 a^{5} + 15 a^{4} + 10 a^{3} + 20 a^{2} + 2 a + 20\right)\cdot 31 + \left(27 a^{5} + 16 a^{4} + 7 a^{3} + 25 a^{2} + 2 a + 1\right)\cdot 31^{2} + \left(13 a^{5} + 5 a^{4} + 24 a^{3} + 18 a^{2} + 21 a + 28\right)\cdot 31^{3} + \left(17 a^{5} + 12 a^{4} + 20 a^{3} + 21 a^{2} + 11 a + 3\right)\cdot 31^{4} + \left(13 a^{5} + 23 a^{4} + 13 a^{3} + 16 a^{2} + 15 a + 20\right)\cdot 31^{5} + \left(11 a^{5} + 5 a^{4} + 16 a^{3} + 28 a^{2} + 20 a + 27\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
| $r_{ 15 }$ | $=$ | $ 13 a^{5} + 30 a^{4} + 14 a^{3} + 16 a^{2} + 7 a + 4 + \left(19 a^{5} + 9 a^{4} + 9 a^{3} + 3 a^{2} + 4 a + 18\right)\cdot 31 + \left(27 a^{5} + 11 a^{4} + 23 a^{3} + 23 a^{2} + 7 a + 29\right)\cdot 31^{2} + \left(10 a^{5} + 12 a^{4} + 2 a^{3} + 7 a^{2} + a + 8\right)\cdot 31^{3} + \left(12 a^{5} + 2 a^{4} + 7 a^{3} + 30 a^{2} + 10 a + 20\right)\cdot 31^{4} + \left(9 a^{5} + 2 a^{4} + 14 a^{3} + 9 a^{2} + 7\right)\cdot 31^{5} + \left(13 a^{5} + 11 a^{4} + 9 a^{3} + 2 a^{2} + 26 a + 6\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
| $r_{ 16 }$ | $=$ | $ 18 a^{5} + 27 a^{4} + 15 a^{3} + 30 a^{2} + 28 a + 20 + \left(15 a^{5} + 29 a^{4} + 10 a^{3} + 20 a^{2} + 29 a + 28\right)\cdot 31 + \left(29 a^{5} + 20 a^{4} + 6 a^{3} + 6 a^{2} + 25 a + 19\right)\cdot 31^{2} + \left(19 a^{5} + 4 a^{4} + 12 a^{3} + 11 a^{2} + 25 a + 30\right)\cdot 31^{3} + \left(a^{5} + 17 a^{4} + 8 a^{3} + 15 a^{2} + 2 a + 4\right)\cdot 31^{4} + \left(14 a^{5} + 30 a^{4} + 23 a^{3} + 30 a^{2} + 9 a + 20\right)\cdot 31^{5} + \left(9 a^{5} + 20 a^{4} + 15 a^{3} + 21 a^{2} + 18 a + 6\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
| $r_{ 17 }$ | $=$ | $ 8 a^{5} + 14 a^{4} + 8 a^{3} + 16 a^{2} + 26 a + 4 + \left(6 a^{5} + 27 a^{4} + 10 a^{3} + 20 a^{2} + 23 a + 4\right)\cdot 31 + \left(30 a^{5} + 2 a^{4} + 23 a^{3} + 16 a^{2} + 18 a + 28\right)\cdot 31^{2} + \left(26 a^{5} + 16 a^{4} + 19 a^{3} + 28 a^{2} + 9 a + 8\right)\cdot 31^{3} + \left(3 a^{5} + 9 a^{4} + 5 a^{3} + 11 a^{2} + 22 a + 21\right)\cdot 31^{4} + \left(2 a^{5} + 7 a^{4} + 20 a^{3} + 3 a^{2} + 10 a + 10\right)\cdot 31^{5} + \left(21 a^{5} + 5 a^{4} + 18 a^{3} + 14 a^{2} + 4 a + 10\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
| $r_{ 18 }$ | $=$ | $ 20 a^{5} + 7 a^{4} + a^{3} + a^{2} + 11 a + 28 + \left(15 a^{5} + 12 a^{4} + 11 a^{3} + 5 a^{2} + 4 a + 26\right)\cdot 31 + \left(6 a^{4} + 27 a^{3} + 25 a^{2} + 20 a + 25\right)\cdot 31^{2} + \left(16 a^{5} + 12 a^{4} + 5 a^{3} + 28 a^{2} + 23 a + 29\right)\cdot 31^{3} + \left(14 a^{5} + 24 a^{4} + 7 a^{3} + 6 a^{2} + 19 a + 11\right)\cdot 31^{4} + \left(11 a^{5} + 6 a^{4} + 13 a^{3} + 17 a^{2} + 23 a + 5\right)\cdot 31^{5} + \left(20 a^{5} + 16 a^{4} + 20 a^{3} + 18 a^{2} + 26 a + 16\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$ |
Generators of the action on the roots $r_1, \ldots, r_{ 18 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 18 }$ | Character value |
| $1$ | $1$ | $()$ | $2$ |
| $3$ | $2$ | $(1,15)(2,18)(3,11)(4,8)(5,10)(6,13)(7,17)(9,12)(14,16)$ | $0$ |
| $1$ | $3$ | $(1,2,17)(3,4,5)(6,9,16)(7,15,18)(8,10,11)(12,14,13)$ | $-2 \zeta_{3} - 2$ |
| $1$ | $3$ | $(1,17,2)(3,5,4)(6,16,9)(7,18,15)(8,11,10)(12,13,14)$ | $2 \zeta_{3}$ |
| $2$ | $3$ | $(1,3,16)(2,4,6)(5,9,17)(7,13,11)(8,15,12)(10,18,14)$ | $\zeta_{3} + 1$ |
| $2$ | $3$ | $(1,16,3)(2,6,4)(5,17,9)(7,11,13)(8,12,15)(10,14,18)$ | $-\zeta_{3}$ |
| $2$ | $3$ | $(1,6,5)(2,9,3)(4,17,16)(7,8,14)(10,13,15)(11,12,18)$ | $-1$ |
| $3$ | $6$ | $(1,7,2,15,17,18)(3,10,4,11,5,8)(6,14,9,13,16,12)$ | $0$ |
| $3$ | $6$ | $(1,18,17,15,2,7)(3,8,5,11,4,10)(6,12,16,13,9,14)$ | $0$ |