Properties

Label 2.3_7e2_11.6t5.2c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 3 \cdot 7^{2} \cdot 11 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$1617= 3 \cdot 7^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{9} - x^{8} + 5 x^{7} - x^{6} - x^{5} + 27 x^{4} - x^{3} - 30 x^{2} + 8 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.3_7_11.6t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 10 a^{2} + 12 a + 11 + \left(12 a^{2} + 12\right)\cdot 13 + \left(2 a^{2} + 2 a\right)\cdot 13^{2} + \left(a^{2} + 10 a + 10\right)\cdot 13^{3} + \left(10 a^{2} + 9\right)\cdot 13^{4} + \left(3 a^{2} + 7 a + 4\right)\cdot 13^{5} + \left(9 a^{2} + 7 a + 12\right)\cdot 13^{6} + \left(12 a^{2} + 7 a + 5\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 7 a^{2} + 7 a + 6 + \left(10 a^{2} + 10\right)\cdot 13 + \left(5 a^{2} + 7 a\right)\cdot 13^{2} + \left(3 a^{2} + 4 a + 2\right)\cdot 13^{3} + \left(10 a^{2} + 7 a\right)\cdot 13^{4} + \left(12 a^{2} + 6 a + 3\right)\cdot 13^{5} + \left(6 a^{2} + 2 a + 10\right)\cdot 13^{6} + \left(2 a^{2} + 4 a + 8\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 3 }$ $=$ $ a^{2} + 3 a + 11 + \left(10 a^{2} + 5 a + 9\right)\cdot 13 + \left(5 a^{2} + 12 a\right)\cdot 13^{2} + \left(10 a^{2} + a + 7\right)\cdot 13^{3} + \left(5 a^{2} + 8 a + 11\right)\cdot 13^{4} + \left(10 a^{2} + 8 a + 12\right)\cdot 13^{5} + \left(10 a + 1\right)\cdot 13^{6} + \left(8 a^{2} + 6 a + 3\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 6 a^{2} + 9 a + 10 + \left(12 a^{2} + 11 a + 3\right)\cdot 13 + \left(12 a + 11\right)\cdot 13^{2} + \left(11 a^{2} + 12 a + 5\right)\cdot 13^{3} + \left(9 a^{2} + 2 a + 9\right)\cdot 13^{4} + \left(11 a^{2} + 12 a + 6\right)\cdot 13^{5} + \left(6 a^{2} + 11 a\right)\cdot 13^{6} + \left(5 a^{2} + a + 5\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 5 a^{2} + 3 a + 12 + \left(5 a^{2} + 7 a + 7\right)\cdot 13 + \left(a^{2} + 6 a + 3\right)\cdot 13^{2} + \left(12 a^{2} + 6 a + 9\right)\cdot 13^{3} + \left(9 a^{2} + 10 a + 12\right)\cdot 13^{4} + \left(2 a^{2} + 10 a + 6\right)\cdot 13^{5} + \left(5 a^{2} + 12 a + 3\right)\cdot 13^{6} + \left(2 a^{2} + a + 4\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 10 a^{2} + 5 a + 11 + 9\cdot 13 + \left(9 a^{2} + 11 a + 4\right)\cdot 13^{2} + \left(2 a + 9\right)\cdot 13^{3} + \left(6 a^{2} + 9 a + 8\right)\cdot 13^{4} + \left(10 a^{2} + 6 a\right)\cdot 13^{5} + \left(9 a^{2} + 6 a\right)\cdot 13^{6} + \left(7 a^{2} + 3 a + 8\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 4 a^{2} + a + 7 + \left(a^{2} + 10 a + 9\right)\cdot 13 + \left(11 a^{2} + 3 a + 11\right)\cdot 13^{2} + \left(4 a^{2} + 2 a + 4\right)\cdot 13^{3} + \left(8 a^{2} + 7 a + 2\right)\cdot 13^{4} + \left(7 a^{2} + 5 a + 7\right)\cdot 13^{5} + \left(9 a^{2} + 7 a + 7\right)\cdot 13^{6} + \left(7 a^{2} + 6 a + 11\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 12 a^{2} + 3 a + 9 + \left(8 a^{2} + 2 a + 6\right)\cdot 13 + \left(a + 6\right)\cdot 13^{2} + \left(12 a^{2} + 8 a + 1\right)\cdot 13^{3} + \left(10 a^{2} + 11 a + 10\right)\cdot 13^{4} + \left(5 a^{2} + 5 a + 4\right)\cdot 13^{5} + \left(8 a + 8\right)\cdot 13^{6} + \left(6 a^{2} + 12 a\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 9 }$ $=$ $ 10 a^{2} + 9 a + 2 + \left(2 a^{2} + 7\right)\cdot 13 + \left(a^{2} + 8 a + 11\right)\cdot 13^{2} + \left(9 a^{2} + 2 a + 1\right)\cdot 13^{3} + \left(6 a^{2} + 7 a\right)\cdot 13^{4} + \left(12 a^{2} + a + 5\right)\cdot 13^{5} + \left(2 a^{2} + 10 a + 7\right)\cdot 13^{6} + \left(12 a^{2} + 6 a + 4\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4)(3,5)(7,8)$
$(2,3)(4,6)(8,9)$
$(1,9,5,6,7,2)(3,4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,4)(3,5)(7,8)$$0$
$1$$3$$(1,5,7)(2,9,6)(3,8,4)$$2 \zeta_{3}$
$1$$3$$(1,7,5)(2,6,9)(3,4,8)$$-2 \zeta_{3} - 2$
$2$$3$$(1,6,4)(2,3,5)(7,9,8)$$-1$
$2$$3$$(1,8,2)(3,6,7)(4,9,5)$$\zeta_{3} + 1$
$2$$3$$(1,2,8)(3,7,6)(4,5,9)$$-\zeta_{3}$
$3$$6$$(1,9,5,6,7,2)(3,4,8)$$0$
$3$$6$$(1,2,7,6,5,9)(3,8,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.