Properties

Label 2.3_7e2_11.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 3 \cdot 7^{2} \cdot 11 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$1617= 3 \cdot 7^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 4 x^{4} - 22 x^{3} + 79 x^{2} - 144 x + 148 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 40 a + 36 + \left(30 a + 33\right)\cdot 41 + 33\cdot 41^{2} + \left(21 a + 20\right)\cdot 41^{3} + 6 a\cdot 41^{4} + \left(28 a + 18\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 15 + 6\cdot 41 + 37 a\cdot 41^{2} + \left(31 a + 38\right)\cdot 41^{3} + \left(10 a + 33\right)\cdot 41^{4} + \left(20 a + 22\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 31 a + 35 + \left(30 a + 29\right)\cdot 41 + \left(4 a + 35\right)\cdot 41^{2} + \left(30 a + 1\right)\cdot 41^{3} + \left(36 a + 8\right)\cdot 41^{4} + \left(7 a + 4\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 4 }$ $=$ $ a + 33 + \left(10 a + 4\right)\cdot 41 + \left(40 a + 5\right)\cdot 41^{2} + \left(19 a + 1\right)\cdot 41^{3} + \left(34 a + 40\right)\cdot 41^{4} + \left(12 a + 13\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 32 a + 1 + \left(40 a + 39\right)\cdot 41 + \left(3 a + 28\right)\cdot 41^{2} + \left(9 a + 14\right)\cdot 41^{3} + \left(30 a + 34\right)\cdot 41^{4} + \left(20 a + 31\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 5 + \left(10 a + 9\right)\cdot 41 + \left(36 a + 19\right)\cdot 41^{2} + \left(10 a + 5\right)\cdot 41^{3} + \left(4 a + 6\right)\cdot 41^{4} + \left(33 a + 32\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,5,2,6,3)$
$(2,3,4)$
$(1,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,2)(3,5)(4,6)$ $0$ $0$
$1$ $3$ $(1,5,6)(2,3,4)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,6,5)(2,4,3)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(2,3,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(2,4,3)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,6,5)(2,3,4)$ $-1$ $-1$
$3$ $6$ $(1,4,5,2,6,3)$ $0$ $0$
$3$ $6$ $(1,3,6,2,5,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.