Properties

Label 2.3_7_19e2.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 7 \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$7581= 3 \cdot 7 \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - 29 x^{6} + 256 x^{4} - 813 x^{2} + 729 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.3_7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 22 + 20\cdot 89 + 72\cdot 89^{2} + 18\cdot 89^{3} + 36\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 24\cdot 89 + 2\cdot 89^{2} + 58\cdot 89^{3} + 4\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 30 + 58\cdot 89 + 26\cdot 89^{2} + 26\cdot 89^{3} + 30\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 44 + 86\cdot 89 + 69\cdot 89^{2} + 50\cdot 89^{3} + 4\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 45 + 2\cdot 89 + 19\cdot 89^{2} + 38\cdot 89^{3} + 84\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 59 + 30\cdot 89 + 62\cdot 89^{2} + 62\cdot 89^{3} + 58\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 64 + 64\cdot 89 + 86\cdot 89^{2} + 30\cdot 89^{3} + 84\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 67 + 68\cdot 89 + 16\cdot 89^{2} + 70\cdot 89^{3} + 52\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,5)(4,8,7,6)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,5)(4,7)(6,8)$$-2$
$2$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$2$$2$$(1,6)(2,7)(3,8)(4,5)$$0$
$2$$4$$(1,2,3,5)(4,8,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.