Properties

Label 2.3_7_19e2.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 7 \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$7581= 3 \cdot 7 \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 11 x^{6} + 46 x^{5} + 103 x^{4} - 525 x^{3} + 837 x^{2} - 360 x + 144 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.3_7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 6 + 7\cdot 41 + 32\cdot 41^{2} + 23\cdot 41^{3} + 19\cdot 41^{4} + 16\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 10 + 20\cdot 41 + 12\cdot 41^{2} + 22\cdot 41^{4} + 25\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 23 + 11\cdot 41 + 25\cdot 41^{2} + 6\cdot 41^{3} + 30\cdot 41^{4} + 8\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 27 + 35\cdot 41 + 2\cdot 41^{2} + 16\cdot 41^{3} + 13\cdot 41^{4} + 13\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 31 + 29\cdot 41 + 23\cdot 41^{2} + 22\cdot 41^{3} + 24\cdot 41^{4} + 34\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 33 + 35\cdot 41 + 4\cdot 41^{2} + 13\cdot 41^{3} + 23\cdot 41^{4} + 28\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 37 + 11\cdot 41 + 4\cdot 41^{2} + 6\cdot 41^{3} + 26\cdot 41^{4} + 32\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 39 + 11\cdot 41 + 17\cdot 41^{2} + 34\cdot 41^{3} + 4\cdot 41^{4} + 4\cdot 41^{5} +O\left(41^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,8)(3,6)(5,7)$
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,5)(4,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,7)(6,8)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,4)(2,8)(3,6)(5,7)$$0$
$2$$4$$(1,8,5,6)(2,4,3,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.