Properties

Label 2.3_7_19.8t6.2c1
Dimension 2
Group $D_{8}$
Conductor $ 3 \cdot 7 \cdot 19 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$399= 3 \cdot 7 \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 2 x^{6} - 6 x^{5} + 17 x^{4} + 3 x^{3} - 7 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd
Determinant: 1.3_7_19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 12 + 41\cdot 97 + 5\cdot 97^{2} + 60\cdot 97^{3} + 20\cdot 97^{4} + 70\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 14 + 16\cdot 97 + 96\cdot 97^{2} + 29\cdot 97^{3} + 25\cdot 97^{4} + 92\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 15 + 13\cdot 97 + 15\cdot 97^{2} + 53\cdot 97^{3} + 12\cdot 97^{4} + 4\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 39 + 79\cdot 97^{2} + 2\cdot 97^{3} + 89\cdot 97^{4} + 74\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 67 + 48\cdot 97 + 58\cdot 97^{2} + 61\cdot 97^{3} + 39\cdot 97^{4} + 54\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 71 + 19\cdot 97 + 33\cdot 97^{2} + 50\cdot 97^{3} + 93\cdot 97^{4} + 89\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 77 + 64\cdot 97 + 80\cdot 97^{2} + 77\cdot 97^{3} + 79\cdot 97^{4} + 45\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 94 + 86\cdot 97 + 19\cdot 97^{2} + 52\cdot 97^{3} + 27\cdot 97^{4} + 53\cdot 97^{5} +O\left(97^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,4,3,8,6,2,5)$
$(1,8)(2,4)(3,5)(6,7)$
$(1,2)(4,8)(6,7)$
$(1,2,8,4)(3,7,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,4)(3,5)(6,7)$$-2$
$4$$2$$(1,2)(4,8)(6,7)$$0$
$4$$2$$(1,5)(2,7)(3,8)(4,6)$$0$
$2$$4$$(1,4,8,2)(3,6,5,7)$$0$
$2$$8$$(1,7,4,3,8,6,2,5)$$-\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,3,2,7,8,5,4,6)$$\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.