Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 + 44\cdot 97 + 52\cdot 97^{2} + 88\cdot 97^{3} + 33\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 27 + 10\cdot 97 + 95\cdot 97^{2} + 69\cdot 97^{3} + 91\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 39 + 12\cdot 97 + 42\cdot 97^{2} + 40\cdot 97^{3} + 29\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 46 + 29\cdot 97 + 8\cdot 97^{2} + 9\cdot 97^{3} + 3\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 51 + 67\cdot 97 + 88\cdot 97^{2} + 87\cdot 97^{3} + 93\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 58 + 84\cdot 97 + 54\cdot 97^{2} + 56\cdot 97^{3} + 67\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 70 + 86\cdot 97 + 97^{2} + 27\cdot 97^{3} + 5\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 95 + 52\cdot 97 + 44\cdot 97^{2} + 8\cdot 97^{3} + 63\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3,8,6)(2,4,7,5)$ |
| $(1,2)(3,5)(4,6)(7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-2$ |
| $2$ |
$2$ |
$(1,2)(3,5)(4,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)(2,3)(5,8)(6,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,8,6)(2,4,7,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.