Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 18 + 63\cdot 97 + 86\cdot 97^{2} + 15\cdot 97^{3} + 78\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 34 + 78\cdot 97 + 19\cdot 97^{2} + 41\cdot 97^{3} + 31\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 67 + 82\cdot 97 + 75\cdot 97^{2} + 24\cdot 97^{3} + 53\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 76 + 66\cdot 97 + 11\cdot 97^{2} + 15\cdot 97^{3} + 31\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,3)(2,4)$ |
| $(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,2)(3,4)$ |
$-2$ |
| $2$ |
$2$ |
$(1,3)(2,4)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,2,3)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.