Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 181 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 + 22\cdot 181 + 119\cdot 181^{2} + 127\cdot 181^{3} + 146\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 10 + 109\cdot 181 + 174\cdot 181^{2} + 179\cdot 181^{3} + 64\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 36 + 155\cdot 181 + 70\cdot 181^{2} + 151\cdot 181^{3} + 124\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 42 + 145\cdot 181 + 181^{2} + 36\cdot 181^{3} + 118\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 67 + 89\cdot 181 + 109\cdot 181^{2} + 58\cdot 181^{3} + 121\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 119 + 103\cdot 181 + 47\cdot 181^{2} + 136\cdot 181^{3} + 85\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 127 + 82\cdot 181 + 52\cdot 181^{2} + 106\cdot 181^{3} + 157\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 142 + 16\cdot 181 + 148\cdot 181^{2} + 108\cdot 181^{3} + 85\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,5)(4,6)$ |
| $(1,4,5,6)$ |
| $(1,5)(2,7)(3,8)(4,6)$ |
| $(1,7,5,2)(3,4,8,6)$ |
| $(1,6,5,4)(2,3,7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,5)(2,7)(3,8)(4,6)$ |
$-2$ |
$-2$ |
| $2$ |
$2$ |
$(1,5)(4,6)$ |
$0$ |
$0$ |
| $4$ |
$2$ |
$(1,8)(2,4)(3,5)(6,7)$ |
$0$ |
$0$ |
| $1$ |
$4$ |
$(1,6,5,4)(2,8,7,3)$ |
$-2 \zeta_{4}$ |
$2 \zeta_{4}$ |
| $1$ |
$4$ |
$(1,4,5,6)(2,3,7,8)$ |
$2 \zeta_{4}$ |
$-2 \zeta_{4}$ |
| $2$ |
$4$ |
$(1,6,5,4)(2,3,7,8)$ |
$0$ |
$0$ |
| $2$ |
$4$ |
$(1,4,5,6)$ |
$-\zeta_{4} - 1$ |
$\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,6,5,4)$ |
$\zeta_{4} - 1$ |
$-\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,6,5,4)(2,7)(3,8)$ |
$\zeta_{4} + 1$ |
$-\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(1,4,5,6)(2,7)(3,8)$ |
$-\zeta_{4} + 1$ |
$\zeta_{4} + 1$ |
| $4$ |
$4$ |
$(1,7,5,2)(3,4,8,6)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,7,6,3,5,2,4,8)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,3,4,7,5,8,6,2)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.