Properties

Label 2.3_7_13_19.4t3.6c1
Dimension 2
Group $D_{4}$
Conductor $ 3 \cdot 7 \cdot 13 \cdot 19 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$5187= 3 \cdot 7 \cdot 13 \cdot 19 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 17 x^{2} + 18 x + 108 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_7_13_19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 36\cdot 67 + 22\cdot 67^{2} + 10\cdot 67^{3} + 7\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 + 41\cdot 67 + 66\cdot 67^{2} + 55\cdot 67^{3} + 34\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 46 + 39\cdot 67 + 4\cdot 67^{2} + 52\cdot 67^{3} + 44\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 59 + 16\cdot 67 + 40\cdot 67^{2} + 15\cdot 67^{3} + 47\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3)(2,4)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.