Properties

Label 2.3_7_13_19.4t3.12c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 7 \cdot 13 \cdot 19 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$5187= 3 \cdot 7 \cdot 13 \cdot 19 $
Artin number field: Splitting field of $f= x^{8} + x^{6} + 433 x^{4} - 432 x^{2} + 186624 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_7_13_19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 4 + 39\cdot 67 + 33\cdot 67^{2} + 31\cdot 67^{3} + 53\cdot 67^{4} + 24\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 17 + 16\cdot 67 + 2\cdot 67^{2} + 62\cdot 67^{3} + 55\cdot 67^{4} + 13\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 18 + 33\cdot 67 + 21\cdot 67^{2} + 39\cdot 67^{3} + 13\cdot 67^{4} + 46\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 24 + 38\cdot 67 + 65\cdot 67^{2} + 17\cdot 67^{3} + 41\cdot 67^{4} + 33\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 43 + 28\cdot 67 + 67^{2} + 49\cdot 67^{3} + 25\cdot 67^{4} + 33\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 49 + 33\cdot 67 + 45\cdot 67^{2} + 27\cdot 67^{3} + 53\cdot 67^{4} + 20\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 50 + 50\cdot 67 + 64\cdot 67^{2} + 4\cdot 67^{3} + 11\cdot 67^{4} + 53\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 63 + 27\cdot 67 + 33\cdot 67^{2} + 35\cdot 67^{3} + 13\cdot 67^{4} + 42\cdot 67^{5} +O\left(67^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$4$$(1,4,8,5)(2,3,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.