Properties

Label 2.3_7_13_19.4t3.11c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 7 \cdot 13 \cdot 19 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$5187= 3 \cdot 7 \cdot 13 \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - 23 x^{6} + 829 x^{4} + 6900 x^{2} + 90000 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_7_13_19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 49\cdot 73 + 11\cdot 73^{2} + 10\cdot 73^{3} + 10\cdot 73^{4} + 62\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 12 + 7\cdot 73 + 47\cdot 73^{2} + 17\cdot 73^{3} + 39\cdot 73^{4} + 69\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 16 + 14\cdot 73 + 66\cdot 73^{2} + 53\cdot 73^{3} + 39\cdot 73^{4} + 3\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 35 + 59\cdot 73 + 45\cdot 73^{2} + 14\cdot 73^{3} + 42\cdot 73^{4} + 39\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 38 + 13\cdot 73 + 27\cdot 73^{2} + 58\cdot 73^{3} + 30\cdot 73^{4} + 33\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 57 + 58\cdot 73 + 6\cdot 73^{2} + 19\cdot 73^{3} + 33\cdot 73^{4} + 69\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 61 + 65\cdot 73 + 25\cdot 73^{2} + 55\cdot 73^{3} + 33\cdot 73^{4} + 3\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 71 + 23\cdot 73 + 61\cdot 73^{2} + 62\cdot 73^{3} + 62\cdot 73^{4} + 10\cdot 73^{5} +O\left(73^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,7)(3,5,6,4)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.