Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7 + 97\cdot 103 + 86\cdot 103^{2} + 66\cdot 103^{3} + 43\cdot 103^{4} +O\left(103^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 10 + 51\cdot 103 + 32\cdot 103^{2} + 35\cdot 103^{3} + 79\cdot 103^{4} +O\left(103^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 18 + 34\cdot 103 + 62\cdot 103^{2} + 66\cdot 103^{3} + 55\cdot 103^{4} +O\left(103^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 19 + 51\cdot 103 + 83\cdot 103^{2} + 89\cdot 103^{3} + 43\cdot 103^{4} +O\left(103^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 41 + 98\cdot 103 + 68\cdot 103^{2} + 28\cdot 103^{3} + 100\cdot 103^{4} +O\left(103^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 44 + 2\cdot 103 + 14\cdot 103^{2} + 22\cdot 103^{3} + 6\cdot 103^{4} +O\left(103^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 81 + 38\cdot 103 + 102\cdot 103^{2} + 80\cdot 103^{3} + 17\cdot 103^{4} +O\left(103^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 92 + 38\cdot 103 + 64\cdot 103^{2} + 21\cdot 103^{3} + 65\cdot 103^{4} +O\left(103^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,5,7,4)$ |
| $(1,2)(3,7)(4,6)(5,8)$ |
| $(2,7)(4,5)$ |
| $(1,3)(2,7)(4,5)(6,8)$ |
| $(1,6,3,8)(2,4,7,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,3)(2,7)(4,5)(6,8)$ | $-2$ |
| $2$ | $2$ | $(2,7)(4,5)$ | $0$ |
| $4$ | $2$ | $(1,2)(3,7)(4,6)(5,8)$ | $0$ |
| $1$ | $4$ | $(1,6,3,8)(2,4,7,5)$ | $-2 \zeta_{4}$ |
| $1$ | $4$ | $(1,8,3,6)(2,5,7,4)$ | $2 \zeta_{4}$ |
| $2$ | $4$ | $(2,5,7,4)$ | $\zeta_{4} + 1$ |
| $2$ | $4$ | $(2,4,7,5)$ | $-\zeta_{4} + 1$ |
| $2$ | $4$ | $(1,3)(2,4,7,5)(6,8)$ | $-\zeta_{4} - 1$ |
| $2$ | $4$ | $(1,3)(2,5,7,4)(6,8)$ | $\zeta_{4} - 1$ |
| $2$ | $4$ | $(1,6,3,8)(2,5,7,4)$ | $0$ |
| $4$ | $4$ | $(1,7,3,2)(4,6,5,8)$ | $0$ |
| $4$ | $8$ | $(1,5,8,7,3,4,6,2)$ | $0$ |
| $4$ | $8$ | $(1,7,6,5,3,2,8,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.