Properties

Label 2.3_7_127.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 7 \cdot 127 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2667= 3 \cdot 7 \cdot 127 $
Artin number field: Splitting field of $f= x^{8} - 11 x^{6} + 313 x^{4} + 2112 x^{2} + 36864 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_7_127.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 223 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 16\cdot 223 + 129\cdot 223^{2} + 177\cdot 223^{3} + 21\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 65 + 191\cdot 223 + 94\cdot 223^{2} + 77\cdot 223^{3} + 139\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 67 + 50\cdot 223 + 9\cdot 223^{2} + 156\cdot 223^{3} + 86\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 76 + 139\cdot 223 + 168\cdot 223^{2} + 69\cdot 223^{3} + 209\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 147 + 83\cdot 223 + 54\cdot 223^{2} + 153\cdot 223^{3} + 13\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 156 + 172\cdot 223 + 213\cdot 223^{2} + 66\cdot 223^{3} + 136\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 158 + 31\cdot 223 + 128\cdot 223^{2} + 145\cdot 223^{3} + 83\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 219 + 206\cdot 223 + 93\cdot 223^{2} + 45\cdot 223^{3} + 201\cdot 223^{4} +O\left(223^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,7)(3,5,6,4)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.