Properties

Label 2.3_7_127.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 3 \cdot 7 \cdot 127 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$2667= 3 \cdot 7 \cdot 127 $
Artin number field: Splitting field of $f= x^{4} + 11 x^{2} - 192 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 223 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 63 + 34\cdot 223 + 103\cdot 223^{2} + 201\cdot 223^{3} + 64\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 82 + 115\cdot 223 + 182\cdot 223^{2} + 75\cdot 223^{3} + 97\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 141 + 107\cdot 223 + 40\cdot 223^{2} + 147\cdot 223^{3} + 125\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 160 + 188\cdot 223 + 119\cdot 223^{2} + 21\cdot 223^{3} + 158\cdot 223^{4} +O\left(223^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.