Properties

Label 2.3_7_11.6t3.3
Dimension 2
Group $D_{6}$
Conductor $ 3 \cdot 7 \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$231= 3 \cdot 7 \cdot 11 $
Artin number field: Splitting field of $f= x^{6} - x^{4} + x^{2} - 3 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 16\cdot 31 + 4\cdot 31^{2} + 14\cdot 31^{3} + 18\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 a + 5 + \left(21 a + 26\right)\cdot 31 + \left(25 a + 8\right)\cdot 31^{2} + \left(5 a + 22\right)\cdot 31^{3} + \left(10 a + 2\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 8 + \left(9 a + 21\right)\cdot 31 + \left(5 a + 7\right)\cdot 31^{2} + \left(25 a + 8\right)\cdot 31^{3} + \left(20 a + 17\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 6 + \left(26 a + 16\right)\cdot 31 + \left(29 a + 27\right)\cdot 31^{2} + \left(11 a + 26\right)\cdot 31^{3} + \left(12 a + 30\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 a + 22 + \left(4 a + 29\right)\cdot 31 + \left(a + 29\right)\cdot 31^{2} + \left(19 a + 20\right)\cdot 31^{3} + \left(18 a + 12\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 18 + 14\cdot 31 + 14\cdot 31^{2} + 11\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(1,2)(3,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,4)(3,5)$ $-2$
$3$ $2$ $(1,2)(3,5)(4,6)$ $0$
$3$ $2$ $(1,5)(3,6)$ $0$
$2$ $3$ $(1,4,5)(2,3,6)$ $-1$
$2$ $6$ $(1,3,4,6,5,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.