Properties

Label 2.3_73.8t17.1
Dimension 2
Group $C_4\wr C_2$
Conductor $ 3 \cdot 73 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$219= 3 \cdot 73 $
Artin number field: Splitting field of $f= x^{8} + 2 x^{6} - 2 x^{5} - 6 x^{4} - 2 x^{3} + 9 x^{2} + 10 x + 4 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 223 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 197\cdot 223 + 5\cdot 223^{2} + 102\cdot 223^{3} + 20\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 + 172\cdot 223 + 66\cdot 223^{2} + 48\cdot 223^{3} + 21\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 + 198\cdot 223 + 46\cdot 223^{2} + 47\cdot 223^{3} + 85\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 44 + 109\cdot 223 + 187\cdot 223^{2} + 153\cdot 223^{3} + 131\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 71 + 129\cdot 223 + 21\cdot 223^{2} + 213\cdot 223^{3} + 207\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 133 + 204\cdot 223 + 210\cdot 223^{2} + 142\cdot 223^{3} + 100\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 175 + 160\cdot 223 + 209\cdot 223^{2} + 198\cdot 223^{3} + 189\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 182 + 166\cdot 223 + 142\cdot 223^{2} + 208\cdot 223^{3} + 134\cdot 223^{4} +O\left(223^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,6,3)(2,7,5,4)$
$(1,6)(2,5)(3,8)(4,7)$
$(1,4,6,7)(2,3,5,8)$
$(2,5)(3,8)$
$(2,3,5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $-2$ $-2$
$2$ $2$ $(2,5)(3,8)$ $0$ $0$
$4$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$ $0$
$1$ $4$ $(1,4,6,7)(2,3,5,8)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,7,6,4)(2,8,5,3)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(2,3,5,8)$ $-\zeta_{4} + 1$ $\zeta_{4} + 1$
$2$ $4$ $(2,8,5,3)$ $\zeta_{4} + 1$ $-\zeta_{4} + 1$
$2$ $4$ $(1,4,6,7)(2,5)(3,8)$ $-\zeta_{4} - 1$ $\zeta_{4} - 1$
$2$ $4$ $(1,7,6,4)(2,5)(3,8)$ $\zeta_{4} - 1$ $-\zeta_{4} - 1$
$2$ $4$ $(1,4,6,7)(2,8,5,3)$ $0$ $0$
$4$ $4$ $(1,8,6,3)(2,7,5,4)$ $0$ $0$
$4$ $8$ $(1,2,7,8,6,5,4,3)$ $0$ $0$
$4$ $8$ $(1,8,4,2,6,3,7,5)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.