Properties

Label 2.3_73.4t3.1c1
Dimension 2
Group $D_{4}$
Conductor $ 3 \cdot 73 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$219= 3 \cdot 73 $
Artin number field: Splitting field of $f= x^{4} - 5 x^{2} - 12 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_73.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 58\cdot 61 + 44\cdot 61^{2} + 58\cdot 61^{3} + 28\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 23\cdot 61 + 6\cdot 61^{2} + 12\cdot 61^{3} + 53\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 38 + 37\cdot 61 + 54\cdot 61^{2} + 48\cdot 61^{3} + 7\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 56 + 2\cdot 61 + 16\cdot 61^{2} + 2\cdot 61^{3} + 32\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.