Properties

Label 2.3_673.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 673 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2019= 3 \cdot 673 $
Artin number field: Splitting field of $f= x^{8} + 25 x^{6} + 637 x^{4} - 300 x^{2} + 144 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 18 + 46\cdot 97 + 47\cdot 97^{2} + 28\cdot 97^{3} + 14\cdot 97^{4} + 33\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 31 + 74\cdot 97 + 33\cdot 97^{2} + 66\cdot 97^{3} + 62\cdot 97^{4} + 76\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 39 + 13\cdot 97 + 10\cdot 97^{2} + 13\cdot 97^{3} + 90\cdot 97^{4} + 14\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 46 + 65\cdot 97 + 69\cdot 97^{2} + 69\cdot 97^{3} + 55\cdot 97^{4} + 51\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 51 + 31\cdot 97 + 27\cdot 97^{2} + 27\cdot 97^{3} + 41\cdot 97^{4} + 45\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 58 + 83\cdot 97 + 86\cdot 97^{2} + 83\cdot 97^{3} + 6\cdot 97^{4} + 82\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 66 + 22\cdot 97 + 63\cdot 97^{2} + 30\cdot 97^{3} + 34\cdot 97^{4} + 20\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 79 + 50\cdot 97 + 49\cdot 97^{2} + 68\cdot 97^{3} + 82\cdot 97^{4} + 63\cdot 97^{5} +O\left(97^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $4$ $(1,5,8,4)(2,3,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.