Properties

Label 2.3_61e2.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 3 \cdot 61^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$11163= 3 \cdot 61^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} + 14 x^{5} - 9 x^{4} - 105 x^{3} - 162 x^{2} - 117 x - 27 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 199 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 134\cdot 199 + 31\cdot 199^{2} + 57\cdot 199^{3} + 122\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 19 + 23\cdot 199 + 59\cdot 199^{2} + 50\cdot 199^{3} + 12\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 + 198\cdot 199 + 17\cdot 199^{2} + 77\cdot 199^{3} + 38\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 82 + 146\cdot 199 + 52\cdot 199^{2} + 176\cdot 199^{3} + 38\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 111 + 195\cdot 199 + 198\cdot 199^{2} + 38\cdot 199^{3} + 116\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 175 + 56\cdot 199 + 128\cdot 199^{2} + 105\cdot 199^{3} + 5\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 182 + 125\cdot 199 + 127\cdot 199^{2} + 195\cdot 199^{3} + 186\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 193 + 114\cdot 199 + 179\cdot 199^{2} + 94\cdot 199^{3} + 76\cdot 199^{4} +O\left(199^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,8)(3,6)(4,5)$
$(1,6,7,3)(2,5,8,4)$
$(1,2)(4,5)(7,8)$
$(1,8,7,2)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,7)(2,8)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,2)(4,5)(7,8)$ $0$ $0$
$2$ $4$ $(1,8,7,2)(3,4,6,5)$ $0$ $0$
$4$ $4$ $(1,6,7,3)(2,5,8,4)$ $0$ $0$
$2$ $8$ $(1,6,8,5,7,3,2,4)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,3,8,4,7,6,2,5)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.