Properties

Label 2.3_613.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 613 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1839= 3 \cdot 613 $
Artin number field: Splitting field of $f= x^{8} - 5 x^{6} + 172 x^{4} + 735 x^{2} + 21609 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 16 + 100\cdot 103 + 99\cdot 103^{2} + 16\cdot 103^{3} + 74\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 + 57\cdot 103 + 69\cdot 103^{2} + 52\cdot 103^{3} + 28\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 + 85\cdot 103 + 29\cdot 103^{2} + 91\cdot 103^{3} + 57\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 43 + 17\cdot 103 + 43\cdot 103^{2} + 101\cdot 103^{3} + 74\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 60 + 85\cdot 103 + 59\cdot 103^{2} + 103^{3} + 28\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 72 + 17\cdot 103 + 73\cdot 103^{2} + 11\cdot 103^{3} + 45\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 82 + 45\cdot 103 + 33\cdot 103^{2} + 50\cdot 103^{3} + 74\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 87 + 2\cdot 103 + 3\cdot 103^{2} + 86\cdot 103^{3} + 28\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.