Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 199 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7 + 49\cdot 199 + 49\cdot 199^{2} + 188\cdot 199^{3} + 126\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 21 + 191\cdot 199 + 130\cdot 199^{2} + 190\cdot 199^{3} + 82\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 68 + 73\cdot 199 + 57\cdot 199^{2} + 37\cdot 199^{3} + 130\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 103 + 84\cdot 199 + 160\cdot 199^{2} + 180\cdot 199^{3} + 57\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 121 + 91\cdot 199 + 73\cdot 199^{2} + 21\cdot 199^{3} + 145\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 143 + 16\cdot 199 + 125\cdot 199^{2} + 79\cdot 199^{3} + 14\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 164 + 42\cdot 199 + 74\cdot 199^{2} + 106\cdot 199^{3} + 136\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 169 + 47\cdot 199 + 125\cdot 199^{2} + 190\cdot 199^{3} + 101\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(2,3)(5,6)(7,8)$ |
| $(1,3,4,2)(5,8,6,7)$ |
| $(1,3)(2,4)(7,8)$ |
| $(1,6,3,7,4,5,2,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,4)(2,3)(5,6)(7,8)$ |
$-2$ |
$-2$ |
| $4$ |
$2$ |
$(1,3)(2,4)(7,8)$ |
$0$ |
$0$ |
| $4$ |
$2$ |
$(1,7)(2,5)(3,6)(4,8)$ |
$0$ |
$0$ |
| $2$ |
$4$ |
$(1,3,4,2)(5,8,6,7)$ |
$0$ |
$0$ |
| $2$ |
$8$ |
$(1,6,3,7,4,5,2,8)$ |
$-\zeta_{8}^{3} + \zeta_{8}$ |
$\zeta_{8}^{3} - \zeta_{8}$ |
| $2$ |
$8$ |
$(1,7,2,6,4,8,3,5)$ |
$\zeta_{8}^{3} - \zeta_{8}$ |
$-\zeta_{8}^{3} + \zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.