Properties

Label 2.3_61.8t6.1c1
Dimension 2
Group $D_{8}$
Conductor $ 3 \cdot 61 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$183= 3 \cdot 61 $
Artin number field: Splitting field of $f= x^{8} + 5 x^{4} - 9 x^{3} + 6 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd
Determinant: 1.3_61.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 199 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 22 + 26\cdot 199 + 82\cdot 199^{2} + 108\cdot 199^{3} + 19\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 48 + 121\cdot 199 + 184\cdot 199^{2} + 111\cdot 199^{3} + 144\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 81 + 58\cdot 199 + 78\cdot 199^{2} + 72\cdot 199^{3} + 38\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 83 + 183\cdot 199 + 194\cdot 199^{2} + 33\cdot 199^{3} + 98\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 99 + 65\cdot 199 + 190\cdot 199^{2} + 111\cdot 199^{3} + 125\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 121 + 125\cdot 199 + 139\cdot 199^{2} + 78\cdot 199^{3} + 156\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 158 + 126\cdot 199 + 63\cdot 199^{2} + 76\cdot 199^{3} + 181\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 184 + 88\cdot 199 + 61\cdot 199^{2} + 3\cdot 199^{3} + 32\cdot 199^{4} +O\left(199^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,8)(3,5)(4,6)$
$(1,2)(3,7)(4,8)(5,6)$
$(1,4,7,6)(2,5,3,8)$
$(1,7)(2,3)(4,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,3)(4,6)(5,8)$$-2$
$4$$2$$(1,2)(3,7)(4,8)(5,6)$$0$
$4$$2$$(2,8)(3,5)(4,6)$$0$
$2$$4$$(1,4,7,6)(2,5,3,8)$$0$
$2$$8$$(1,8,6,3,7,5,4,2)$$-\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,3,4,8,7,2,6,5)$$\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.