Properties

Label 2.3_61.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 61 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$183= 3 \cdot 61 $
Artin number field: Splitting field of $f= x^{8} + 7 x^{6} + 52 x^{4} - 21 x^{2} + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_61.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 73 + 29\cdot 73^{2} + 34\cdot 73^{3} + 58\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 4\cdot 73 + 39\cdot 73^{2} + 67\cdot 73^{3} + 70\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 29 + 53\cdot 73 + 13\cdot 73^{2} + 9\cdot 73^{3} + 19\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 31 + 36\cdot 73 + 66\cdot 73^{2} + 5\cdot 73^{3} + 40\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 42 + 36\cdot 73 + 6\cdot 73^{2} + 67\cdot 73^{3} + 32\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 44 + 19\cdot 73 + 59\cdot 73^{2} + 63\cdot 73^{3} + 53\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 50 + 68\cdot 73 + 33\cdot 73^{2} + 5\cdot 73^{3} + 2\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 61 + 71\cdot 73 + 43\cdot 73^{2} + 38\cdot 73^{3} + 14\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,6)(2,4,7,5)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.