Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 12 + 73 + 29\cdot 73^{2} + 34\cdot 73^{3} + 58\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 23 + 4\cdot 73 + 39\cdot 73^{2} + 67\cdot 73^{3} + 70\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 29 + 53\cdot 73 + 13\cdot 73^{2} + 9\cdot 73^{3} + 19\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 31 + 36\cdot 73 + 66\cdot 73^{2} + 5\cdot 73^{3} + 40\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 42 + 36\cdot 73 + 6\cdot 73^{2} + 67\cdot 73^{3} + 32\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 44 + 19\cdot 73 + 59\cdot 73^{2} + 63\cdot 73^{3} + 53\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 50 + 68\cdot 73 + 33\cdot 73^{2} + 5\cdot 73^{3} + 2\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 61 + 71\cdot 73 + 43\cdot 73^{2} + 38\cdot 73^{3} + 14\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3,8,6)(2,4,7,5)$ |
| $(1,2)(3,5)(4,6)(7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-2$ |
| $2$ | $2$ | $(1,2)(3,5)(4,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,3)(5,8)(6,7)$ | $0$ |
| $2$ | $4$ | $(1,3,8,6)(2,4,7,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.