Properties

Label 2.3_5e2_7.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 3 \cdot 5^{2} \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$525= 3 \cdot 5^{2} \cdot 7 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 9 x^{4} - 6 x^{3} + 26 x^{2} - 11 x + 19 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.3_7.6t1.2c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 23 a + 23 + \left(24 a + 17\right)\cdot 29 + \left(6 a + 21\right)\cdot 29^{2} + \left(5 a + 7\right)\cdot 29^{3} + \left(17 a + 14\right)\cdot 29^{4} + \left(24 a + 26\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 22 a + 4 + \left(5 a + 24\right)\cdot 29 + \left(12 a + 22\right)\cdot 29^{2} + \left(17 a + 24\right)\cdot 29^{3} + \left(9 a + 19\right)\cdot 29^{4} + \left(a + 8\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 22 + \left(4 a + 2\right)\cdot 29 + \left(22 a + 2\right)\cdot 29^{2} + \left(23 a + 27\right)\cdot 29^{3} + \left(11 a + 7\right)\cdot 29^{4} + \left(4 a + 16\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 16 a + 24 + \left(2 a + 21\right)\cdot 29 + \left(9 a + 17\right)\cdot 29^{2} + \left(6 a + 10\right)\cdot 29^{3} + 23 a\cdot 29^{4} + \left(24 a + 8\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 27 + \left(23 a + 1\right)\cdot 29 + \left(16 a + 20\right)\cdot 29^{2} + \left(11 a + 12\right)\cdot 29^{3} + \left(19 a + 21\right)\cdot 29^{4} + \left(27 a + 5\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 17 + \left(26 a + 18\right)\cdot 29 + \left(19 a + 2\right)\cdot 29^{2} + \left(22 a + 4\right)\cdot 29^{3} + \left(5 a + 23\right)\cdot 29^{4} + \left(4 a + 21\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,6)(2,3,4)$
$(1,2,5,4,6,3)$
$(1,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,4)(2,6)(3,5)$$0$
$1$$3$$(1,5,6)(2,4,3)$$-2 \zeta_{3} - 2$
$1$$3$$(1,6,5)(2,3,4)$$2 \zeta_{3}$
$2$$3$$(1,5,6)(2,3,4)$$-1$
$2$$3$$(1,5,6)$$-\zeta_{3}$
$2$$3$$(1,6,5)$$\zeta_{3} + 1$
$3$$6$$(1,2,5,4,6,3)$$0$
$3$$6$$(1,3,6,4,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.