Properties

Label 2.3_5e2_29.9t3.1c2
Dimension 2
Group $D_{9}$
Conductor $ 3 \cdot 5^{2} \cdot 29 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$2175= 3 \cdot 5^{2} \cdot 29 $
Artin number field: Splitting field of $f= x^{9} - x^{8} + 4 x^{7} - 11 x^{6} + 11 x^{5} - 41 x^{4} + 24 x^{3} - 60 x^{2} + 45 x - 45 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.3_29.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{3} + x + 35 $
Roots:
$r_{ 1 }$ $=$ $ 39 a^{2} + 32 a + 23 + \left(2 a^{2} + a + 28\right)\cdot 41 + \left(4 a^{2} + 12 a + 12\right)\cdot 41^{2} + \left(7 a^{2} + 18\right)\cdot 41^{3} + \left(30 a^{2} + 37 a + 13\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 a^{2} + 29 a + 37 + \left(35 a^{2} + 12 a + 32\right)\cdot 41 + \left(3 a^{2} + 4 a + 37\right)\cdot 41^{2} + \left(22 a^{2} + 12 a + 34\right)\cdot 41^{3} + \left(27 a^{2} + 16 a + 38\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 40 a^{2} + 31 a + 10 + \left(34 a^{2} + 4 a + 36\right)\cdot 41 + \left(4 a^{2} + 5 a + 26\right)\cdot 41^{2} + \left(10 a^{2} + 21 a + 6\right)\cdot 41^{3} + \left(11 a^{2} + 17 a + 28\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 4 a^{2} + 22 a + 22 + \left(16 a^{2} + 33 a + 29\right)\cdot 41 + \left(a^{2} + 10 a + 37\right)\cdot 41^{2} + \left(4 a^{2} + a + 9\right)\cdot 41^{3} + \left(32 a^{2} + 18 a + 21\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a^{2} + 38 a + 16 + \left(40 a^{2} + 27 a + 22\right)\cdot 41 + \left(19 a^{2} + 2 a + 7\right)\cdot 41^{2} + \left(38 a^{2} + a + 32\right)\cdot 41^{3} + \left(26 a^{2} + 33 a + 24\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 16 a^{2} + 15 a + 22 + \left(6 a^{2} + 13\right)\cdot 41 + \left(17 a^{2} + 34 a + 19\right)\cdot 41^{2} + \left(21 a^{2} + 27 a + 34\right)\cdot 41^{3} + \left(27 a^{2} + 32 a + 38\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 3 a^{2} + 19 a + 40 + \left(3 a^{2} + 34 a + 14\right)\cdot 41 + \left(32 a^{2} + 23 a + 31\right)\cdot 41^{2} + \left(23 a^{2} + 19 a + 15\right)\cdot 41^{3} + \left(40 a^{2} + 27 a + 20\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 33 a^{2} + 10 a + 14 + \left(12 a^{2} + 13 a + 27\right)\cdot 41 + \left(33 a^{2} + 16 a + 31\right)\cdot 41^{2} + \left(17 a^{2} + 25 a + 32\right)\cdot 41^{3} + \left(22 a^{2} + 10 a + 14\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 4 a^{2} + 9 a + 22 + \left(12 a^{2} + 35 a + 40\right)\cdot 41 + \left(6 a^{2} + 13 a + 40\right)\cdot 41^{2} + \left(19 a^{2} + 14 a + 19\right)\cdot 41^{3} + \left(27 a^{2} + 12 a + 4\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3)(2,4)(5,8)(6,9)$
$(1,7,3)(2,5,6)(4,9,8)$
$(1,8,2,7,4,5,3,9,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,3)(2,4)(5,8)(6,9)$$0$
$2$$3$$(1,7,3)(2,5,6)(4,9,8)$$-1$
$2$$9$$(1,8,2,7,4,5,3,9,6)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,2,4,3,6,8,7,5,9)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$$9$$(1,4,6,7,9,2,3,8,5)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.