Properties

Label 2.3_5e2_13.8t11.2c2
Dimension 2
Group $Q_8:C_2$
Conductor $ 3 \cdot 5^{2} \cdot 13 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$975= 3 \cdot 5^{2} \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 10 x^{6} - 9 x^{5} + 34 x^{4} - 29 x^{3} + 45 x^{2} - 36 x + 16 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.3_5_13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 18 + 50\cdot 79 + 64\cdot 79^{2} + 47\cdot 79^{3} + 58\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 + 19\cdot 79 + 24\cdot 79^{2} + 74\cdot 79^{3} + 45\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 + 49\cdot 79 + 27\cdot 79^{2} + 25\cdot 79^{3} + 50\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 48 + 30\cdot 79 + 3\cdot 79^{2} + 60\cdot 79^{3} + 8\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 57 + 76\cdot 79 + 29\cdot 79^{2} + 75\cdot 79^{3} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 66 + 35\cdot 79 + 41\cdot 79^{2} + 43\cdot 79^{3} + 10\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 70 + 38\cdot 79 + 67\cdot 79^{2} + 67\cdot 79^{3} + 23\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 74 + 14\cdot 79 + 57\cdot 79^{2} + 38\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,8)(3,5)(4,6)$
$(1,5,7,3)(2,4,8,6)$
$(1,5,7,3)(2,6,8,4)$
$(1,2,7,8)(3,6,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,8)(3,5)(4,6)$$-2$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$2$$(2,8)(4,6)$$0$
$2$$2$$(1,2)(3,6)(4,5)(7,8)$$0$
$1$$4$$(1,5,7,3)(2,4,8,6)$$2 \zeta_{4}$
$1$$4$$(1,3,7,5)(2,6,8,4)$$-2 \zeta_{4}$
$2$$4$$(1,2,7,8)(3,6,5,4)$$0$
$2$$4$$(1,5,7,3)(2,6,8,4)$$0$
$2$$4$$(1,4,7,6)(2,5,8,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.