Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 18 + 50\cdot 79 + 64\cdot 79^{2} + 47\cdot 79^{3} + 58\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 26 + 19\cdot 79 + 24\cdot 79^{2} + 74\cdot 79^{3} + 45\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 37 + 49\cdot 79 + 27\cdot 79^{2} + 25\cdot 79^{3} + 50\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 48 + 30\cdot 79 + 3\cdot 79^{2} + 60\cdot 79^{3} + 8\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 57 + 76\cdot 79 + 29\cdot 79^{2} + 75\cdot 79^{3} +O\left(79^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 66 + 35\cdot 79 + 41\cdot 79^{2} + 43\cdot 79^{3} + 10\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 70 + 38\cdot 79 + 67\cdot 79^{2} + 67\cdot 79^{3} + 23\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 74 + 14\cdot 79 + 57\cdot 79^{2} + 38\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7)(2,8)(3,5)(4,6)$ |
| $(1,5,7,3)(2,4,8,6)$ |
| $(1,5,7,3)(2,6,8,4)$ |
| $(1,2,7,8)(3,6,5,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,7)(2,8)(3,5)(4,6)$ |
$-2$ |
$-2$ |
| $2$ |
$2$ |
$(1,4)(2,3)(5,8)(6,7)$ |
$0$ |
$0$ |
| $2$ |
$2$ |
$(2,8)(4,6)$ |
$0$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,6)(4,5)(7,8)$ |
$0$ |
$0$ |
| $1$ |
$4$ |
$(1,5,7,3)(2,4,8,6)$ |
$-2 \zeta_{4}$ |
$2 \zeta_{4}$ |
| $1$ |
$4$ |
$(1,3,7,5)(2,6,8,4)$ |
$2 \zeta_{4}$ |
$-2 \zeta_{4}$ |
| $2$ |
$4$ |
$(1,2,7,8)(3,6,5,4)$ |
$0$ |
$0$ |
| $2$ |
$4$ |
$(1,5,7,3)(2,6,8,4)$ |
$0$ |
$0$ |
| $2$ |
$4$ |
$(1,4,7,6)(2,5,8,3)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.