Properties

Label 2.3_5e2_13.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 5^{2} \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$975= 3 \cdot 5^{2} \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + x^{6} + 16 x^{5} - 7 x^{4} - 2 x^{3} + 64 x^{2} + 8 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 43 + 13\cdot 127 + 7\cdot 127^{2} + 69\cdot 127^{3} + 38\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 55 + 25\cdot 127 + 98\cdot 127^{2} + 107\cdot 127^{3} + 81\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 80 + 105\cdot 127 + 83\cdot 127^{2} + 34\cdot 127^{3} + 14\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 102 + 85\cdot 127 + 3\cdot 127^{2} + 74\cdot 127^{3} + 97\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 119 + 20\cdot 127 + 13\cdot 127^{2} + 119\cdot 127^{3} + 91\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 120 + 74\cdot 127 + 32\cdot 127^{2} + 21\cdot 127^{3} + 11\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 121 + 7\cdot 127 + 56\cdot 127^{2} + 93\cdot 127^{3} + 16\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 123 + 46\cdot 127 + 86\cdot 127^{2} + 115\cdot 127^{3} + 28\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,8)(4,7)(5,6)$
$(1,2)(3,8)(4,6)(5,7)$
$(1,4,3,7)(2,5,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,8)(4,7)(5,6)$ $-2$
$2$ $2$ $(1,2)(3,8)(4,6)(5,7)$ $0$
$2$ $2$ $(1,5)(2,4)(3,6)(7,8)$ $0$
$2$ $4$ $(1,4,3,7)(2,5,8,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.