Properties

Label 2.3_5e2_11e2.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 5^{2} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$9075= 3 \cdot 5^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 13 x^{6} - 14 x^{5} + 98 x^{4} - 38 x^{3} + 877 x^{2} + 767 x + 3481 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 6\cdot 37 + 22\cdot 37^{2} + 11\cdot 37^{3} + 13\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 18\cdot 37 + 3\cdot 37^{2} + 27\cdot 37^{3} + 4\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 + 12\cdot 37 + 18\cdot 37^{2} + 12\cdot 37^{3} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 + 15\cdot 37 + 15\cdot 37^{2} + 15\cdot 37^{3} + 13\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 + 13\cdot 37 + 5\cdot 37^{2} + 27\cdot 37^{3} + 17\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 32 + 11\cdot 37 + 29\cdot 37^{2} + 15\cdot 37^{3} + 35\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 34 + 6\cdot 37 + 36\cdot 37^{2} + 25\cdot 37^{3} + 19\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 35 + 25\cdot 37 + 17\cdot 37^{2} + 12\cdot 37^{3} + 6\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,5)(2,4,6,7)$
$(1,2)(3,7)(4,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,6)(3,5)(4,7)$$-2$
$2$$2$$(1,2)(3,7)(4,5)(6,8)$$0$
$2$$2$$(1,4)(2,3)(5,6)(7,8)$$0$
$2$$4$$(1,3,8,5)(2,4,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.