Properties

Label 2.3_5e2_11e2.4t3.1c1
Dimension 2
Group $D_{4}$
Conductor $ 3 \cdot 5^{2} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$9075= 3 \cdot 5^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 10 x^{2} + 57 x - 51 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 18\cdot 37 + 14\cdot 37^{2} + 27\cdot 37^{3} + 11\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 29\cdot 37 + 20\cdot 37^{2} + 5\cdot 37^{3} + 31\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 + 7\cdot 37 + 21\cdot 37^{2} + 2\cdot 37^{3} + 11\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 + 19\cdot 37 + 17\cdot 37^{2} + 37^{3} + 20\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,3)$$0$
$2$$4$$(1,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.