Properties

Label 2.3_5e2_11.8t17.2c1
Dimension 2
Group $C_4\wr C_2$
Conductor $ 3 \cdot 5^{2} \cdot 11 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$825= 3 \cdot 5^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 5 x^{6} - 2 x^{5} + 9 x^{4} - 2 x^{3} + 5 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd
Determinant: 1.3_5_11.4t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 24\cdot 59 + 48\cdot 59^{2} + 5\cdot 59^{3} + 40\cdot 59^{4} + 32\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 16 + 35\cdot 59 + 21\cdot 59^{2} + 42\cdot 59^{3} + 18\cdot 59^{4} + 27\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 19 + 44\cdot 59 + 57\cdot 59^{2} + 7\cdot 59^{3} + 11\cdot 59^{4} + 37\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 28 + 3\cdot 59 + 29\cdot 59^{2} + 45\cdot 59^{3} + 19\cdot 59^{4} + 11\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 30 + 23\cdot 59 + 30\cdot 59^{2} + 28\cdot 59^{3} + 39\cdot 59^{4} + 57\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 42 + 36\cdot 59 + 24\cdot 59^{2} + 48\cdot 59^{3} + 11\cdot 59^{4} + 13\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 48 + 38\cdot 59 + 10\cdot 59^{2} + 54\cdot 59^{3} + 2\cdot 59^{4} + 39\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 52 + 29\cdot 59 + 13\cdot 59^{2} + 3\cdot 59^{3} + 33\cdot 59^{4} + 17\cdot 59^{5} +O\left(59^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,3,7,4)$
$(1,4,5,3)(2,6,7,8)$
$(2,7)(3,4)$
$(1,6,5,8)(2,4,7,3)$
$(1,5)(2,7)(3,4)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,7)(3,4)(6,8)$$-2$
$2$$2$$(2,7)(3,4)$$0$
$4$$2$$(1,7)(2,5)(3,6)(4,8)$$0$
$1$$4$$(1,6,5,8)(2,4,7,3)$$2 \zeta_{4}$
$1$$4$$(1,8,5,6)(2,3,7,4)$$-2 \zeta_{4}$
$2$$4$$(2,3,7,4)$$\zeta_{4} - 1$
$2$$4$$(2,4,7,3)$$-\zeta_{4} - 1$
$2$$4$$(1,5)(2,4,7,3)(6,8)$$-\zeta_{4} + 1$
$2$$4$$(1,5)(2,3,7,4)(6,8)$$\zeta_{4} + 1$
$2$$4$$(1,6,5,8)(2,3,7,4)$$0$
$4$$4$$(1,4,5,3)(2,6,7,8)$$0$
$4$$8$$(1,2,6,4,5,7,8,3)$$0$
$4$$8$$(1,4,8,2,5,3,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.