Properties

Label 2.3_5_7e2.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 5 \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$735= 3 \cdot 5 \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 4 x^{6} - 2 x^{5} - 28 x^{4} + 71 x^{3} - 6 x^{2} - 130 x + 109 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 38\cdot 47 + 33\cdot 47^{2} + 46\cdot 47^{3} + 25\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 8\cdot 47 + 6\cdot 47^{2} + 36\cdot 47^{3} + 37\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 + 29\cdot 47 + 27\cdot 47^{2} + 37\cdot 47^{3} + 39\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 25 + 39\cdot 47 + 12\cdot 47^{2} + 17\cdot 47^{3} + 37\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 28 + 47 + 35\cdot 47^{3} + 8\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 29 + 24\cdot 47 + 10\cdot 47^{2} + 45\cdot 47^{3} + 37\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 34 + 12\cdot 47 + 47^{2} + 32\cdot 47^{3} + 45\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 44 + 33\cdot 47 + 47^{2} + 32\cdot 47^{3} + 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,6)(4,7)(5,8)$
$(1,4,6,5)(2,7,3,8)$
$(1,2)(3,6)(4,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,3)(4,5)(7,8)$$-2$
$2$$2$$(1,2)(3,6)(4,8)(5,7)$$0$
$2$$2$$(1,7)(2,4)(3,5)(6,8)$$0$
$2$$4$$(1,4,6,5)(2,7,3,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.