Properties

Label 2.3_5_7e2.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 5 \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$735= 3 \cdot 5 \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 5 x^{6} - 2 x^{4} + 60 x^{2} + 81 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 107\cdot 109 + 106\cdot 109^{2} + 35\cdot 109^{3} + 8\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 36 + 26\cdot 109 + 18\cdot 109^{2} + 100\cdot 109^{3} + 89\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 39 + 30\cdot 109 + 29\cdot 109^{2} + 47\cdot 109^{3} + 4\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 54 + 95\cdot 109 + 98\cdot 109^{2} + 93\cdot 109^{3} + 54\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 55 + 13\cdot 109 + 10\cdot 109^{2} + 15\cdot 109^{3} + 54\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 70 + 78\cdot 109 + 79\cdot 109^{2} + 61\cdot 109^{3} + 104\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 73 + 82\cdot 109 + 90\cdot 109^{2} + 8\cdot 109^{3} + 19\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 102 + 109 + 2\cdot 109^{2} + 73\cdot 109^{3} + 100\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,4,2,6)(3,8,5,7)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,5)(4,6)(7,8)$$-2$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$2$$(1,8)(2,7)(3,4)(5,6)$$0$
$2$$4$$(1,4,2,6)(3,8,5,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.