Properties

Label 2.3_5_53.8t11.1
Dimension 2
Group $Q_8:C_2$
Conductor $ 3 \cdot 5 \cdot 53 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$795= 3 \cdot 5 \cdot 53 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 3 x^{6} + 4 x^{5} - 7 x^{4} + 4 x^{3} + 30 x^{2} - 46 x + 19 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 199 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 79\cdot 199 + 81\cdot 199^{2} + 83\cdot 199^{3} + 64\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 3\cdot 199 + 163\cdot 199^{2} + 61\cdot 199^{3} + 142\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 33 + 127\cdot 199 + 13\cdot 199^{2} + 130\cdot 199^{3} + 68\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 34 + 57\cdot 199 + 198\cdot 199^{2} + 172\cdot 199^{3} + 93\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 96 + 146\cdot 199 + 8\cdot 199^{2} + 172\cdot 199^{3} + 2\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 98 + 117\cdot 199 + 82\cdot 199^{2} + 53\cdot 199^{3} + 48\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 115 + 196\cdot 199 + 172\cdot 199^{2} + 12\cdot 199^{3} + 133\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 182 + 68\cdot 199 + 75\cdot 199^{2} + 109\cdot 199^{3} + 43\cdot 199^{4} +O\left(199^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,4)(7,8)$
$(1,5,2,6)(3,8,4,7)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,3,2,4)(5,7,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $-2$ $-2$
$2$ $2$ $(3,4)(7,8)$ $0$ $0$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$ $0$
$2$ $2$ $(1,7)(2,8)(3,6)(4,5)$ $0$ $0$
$1$ $4$ $(1,5,2,6)(3,7,4,8)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,6,2,5)(3,8,4,7)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,5,2,6)(3,8,4,7)$ $0$ $0$
$2$ $4$ $(1,3,2,4)(5,7,6,8)$ $0$ $0$
$2$ $4$ $(1,7,2,8)(3,5,4,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.