Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 10 + 6\cdot 17 + 15\cdot 17^{2} + 12\cdot 17^{3} + 15\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 11 a + 1 + \left(4 a + 16\right)\cdot 17 + 3\cdot 17^{2} + \left(3 a + 2\right)\cdot 17^{3} + \left(14 a + 15\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 6 a + 12 + \left(12 a + 9\right)\cdot 17 + \left(16 a + 16\right)\cdot 17^{2} + \left(13 a + 4\right)\cdot 17^{3} + \left(2 a + 9\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 9 a + 10 + \left(5 a + 2\right)\cdot 17 + \left(a + 1\right)\cdot 17^{2} + \left(2 a + 15\right)\cdot 17^{3} + \left(8 a + 10\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 8 a + 2 + \left(11 a + 16\right)\cdot 17 + \left(15 a + 13\right)\cdot 17^{2} + \left(14 a + 15\right)\cdot 17^{3} + \left(8 a + 16\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)(3,4)$ |
| $(1,5)(2,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $5$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $2$ | $5$ | $(1,4,3,2,5)$ | $\zeta_{5}^{3} + \zeta_{5}^{2}$ |
| $2$ | $5$ | $(1,3,5,4,2)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2} - 1$ |
The blue line marks the conjugacy class containing complex conjugation.