Properties

Label 2.3_5_17.8t11.3
Dimension 2
Group $Q_8:C_2$
Conductor $ 3 \cdot 5 \cdot 17 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$255= 3 \cdot 5 \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - 5 x^{6} - 4 x^{4} + 15 x^{2} + 9 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 19 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 3 + 9\cdot 19 + 17\cdot 19^{2} + 17\cdot 19^{3} + 5\cdot 19^{4} + 15\cdot 19^{5} + 15\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 5 + 14\cdot 19 + 3\cdot 19^{2} + 10\cdot 19^{4} + 18\cdot 19^{5} + 18\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 6 + 5\cdot 19 + 2\cdot 19^{2} + 12\cdot 19^{3} + 18\cdot 19^{4} + 8\cdot 19^{5} + 15\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 7 + 14\cdot 19 + 14\cdot 19^{2} + 6\cdot 19^{3} + 15\cdot 19^{4} + 7\cdot 19^{5} + 4\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 12 + 4\cdot 19 + 4\cdot 19^{2} + 12\cdot 19^{3} + 3\cdot 19^{4} + 11\cdot 19^{5} + 14\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 13 + 13\cdot 19 + 16\cdot 19^{2} + 6\cdot 19^{3} + 10\cdot 19^{5} + 3\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 14 + 4\cdot 19 + 15\cdot 19^{2} + 18\cdot 19^{3} + 8\cdot 19^{4} +O\left(19^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 16 + 9\cdot 19 + 19^{2} + 19^{3} + 13\cdot 19^{4} + 3\cdot 19^{5} + 3\cdot 19^{6} +O\left(19^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,4,8,5)(2,3,7,6)$
$(1,7,8,2)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(2,7)(3,6)$ $0$ $0$
$2$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$ $0$
$2$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $0$ $0$
$1$ $4$ $(1,4,8,5)(2,3,7,6)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,5,8,4)(2,6,7,3)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,4,8,5)(2,6,7,3)$ $0$ $0$
$2$ $4$ $(1,7,8,2)(3,4,6,5)$ $0$ $0$
$2$ $4$ $(1,6,8,3)(2,5,7,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.