Properties

Label 2.3_5_17.8t11.2
Dimension 2
Group $Q_8:C_2$
Conductor $ 3 \cdot 5 \cdot 17 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$255= 3 \cdot 5 \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 7 x^{6} + x^{5} + 12 x^{4} + 5 x^{3} - 5 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 19 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 14\cdot 19 + 13\cdot 19^{2} + 14\cdot 19^{3} + 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 + 10\cdot 19 + 18\cdot 19^{2} + 10\cdot 19^{3} + 16\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 + 5\cdot 19 + 17\cdot 19^{2} + 4\cdot 19^{3} + 5\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 + 7\cdot 19^{2} + 17\cdot 19^{3} + 8\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 8 + 17\cdot 19 + 19^{2} + 15\cdot 19^{3} + 6\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 + 10\cdot 19 + 18\cdot 19^{2} + 18\cdot 19^{3} + 10\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 13 + 16\cdot 19 + 12\cdot 19^{2} + 3\cdot 19^{3} + 6\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 14 + 19 + 5\cdot 19^{2} + 9\cdot 19^{3} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,4)(3,7)(6,8)$
$(1,3)(2,6)(4,8)(5,7)$
$(1,2,5,4)(3,6,7,8)$
$(1,2,5,4)(3,8,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,5)(2,4)(3,7)(6,8)$ $-2$ $-2$
$2$ $2$ $(1,3)(2,6)(4,8)(5,7)$ $0$ $0$
$2$ $2$ $(1,8)(2,3)(4,7)(5,6)$ $0$ $0$
$2$ $2$ $(3,7)(6,8)$ $0$ $0$
$1$ $4$ $(1,2,5,4)(3,6,7,8)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,4,5,2)(3,8,7,6)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,6,5,8)(2,7,4,3)$ $0$ $0$
$2$ $4$ $(1,2,5,4)(3,8,7,6)$ $0$ $0$
$2$ $4$ $(1,3,5,7)(2,6,4,8)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.