Properties

Label 2.3_5_17.8t11.1c2
Dimension 2
Group $Q_8:C_2$
Conductor $ 3 \cdot 5 \cdot 17 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$255= 3 \cdot 5 \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + x^{6} + x^{4} - 8 x^{3} + 12 x^{2} - 6 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.3_5_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 229 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 20 + 159\cdot 229 + 219\cdot 229^{2} + 127\cdot 229^{3} + 128\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 71 + 109\cdot 229 + 169\cdot 229^{2} + 27\cdot 229^{3} + 184\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 108 + 215\cdot 229 + 225\cdot 229^{2} + 165\cdot 229^{3} + 220\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 116 + 122\cdot 229 + 229^{2} + 110\cdot 229^{3} + 138\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 191 + 42\cdot 229 + 113\cdot 229^{2} + 124\cdot 229^{3} + 134\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 212 + 8\cdot 229 + 6\cdot 229^{2} + 84\cdot 229^{3} + 140\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 213 + 12\cdot 229 + 118\cdot 229^{2} + 142\cdot 229^{3} + 72\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 215 + 15\cdot 229 + 62\cdot 229^{2} + 133\cdot 229^{3} + 125\cdot 229^{4} +O\left(229^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,3)(5,7)(6,8)$
$(1,7)(2,8)(3,6)(4,5)$
$(3,6)(4,5)$
$(1,3)(2,5)(4,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,8)(3,6)(4,5)$$-2$
$2$$2$$(1,3)(2,5)(4,8)(6,7)$$0$
$2$$2$$(1,4)(2,3)(5,7)(6,8)$$0$
$2$$2$$(3,6)(4,5)$$0$
$1$$4$$(1,2,7,8)(3,5,6,4)$$2 \zeta_{4}$
$1$$4$$(1,8,7,2)(3,4,6,5)$$-2 \zeta_{4}$
$2$$4$$(1,6,7,3)(2,4,8,5)$$0$
$2$$4$$(1,2,7,8)(3,4,6,5)$$0$
$2$$4$$(1,5,7,4)(2,6,8,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.