Properties

Label 2.3_5_17.6t3.6c1
Dimension 2
Group $D_{6}$
Conductor $ 3 \cdot 5 \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$255= 3 \cdot 5 \cdot 17 $
Artin number field: Splitting field of $f= x^{6} - 9 x^{3} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.3_5_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 23 + 22\cdot 23^{2} + 12\cdot 23^{3} + 8\cdot 23^{4} + 22\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 17 + 18\cdot 23 + 16\cdot 23^{2} + 2\cdot 23^{3} + 12\cdot 23^{4} + 7\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 5 + \left(11 a + 7\right)\cdot 23 + \left(19 a + 21\right)\cdot 23^{2} + \left(20 a + 16\right)\cdot 23^{3} + 16\cdot 23^{4} + \left(18 a + 5\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 22 a + 4 + \left(6 a + 6\right)\cdot 23 + \left(19 a + 10\right)\cdot 23^{2} + \left(12 a + 18\right)\cdot 23^{3} + \left(3 a + 19\right)\cdot 23^{4} + \left(7 a + 13\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 14 + \left(11 a + 14\right)\cdot 23 + \left(3 a + 2\right)\cdot 23^{2} + \left(2 a + 16\right)\cdot 23^{3} + \left(22 a + 20\right)\cdot 23^{4} + \left(4 a + 17\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ a + 2 + \left(16 a + 21\right)\cdot 23 + \left(3 a + 18\right)\cdot 23^{2} + \left(10 a + 1\right)\cdot 23^{3} + \left(19 a + 14\right)\cdot 23^{4} + \left(15 a + 1\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(3,5)(4,6)$
$(1,2)(3,6)(4,5)$
$(1,3)(2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,6)(4,5)$$-2$
$3$$2$$(1,3)(2,6)$$0$
$3$$2$$(1,6)(2,3)(4,5)$$0$
$2$$3$$(1,5,3)(2,4,6)$$-1$
$2$$6$$(1,4,3,2,5,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.