Properties

Label 2.3_5_167.6t3.5
Dimension 2
Group $D_{6}$
Conductor $ 3 \cdot 5 \cdot 167 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$2505= 3 \cdot 5 \cdot 167 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} + 7 x^{3} + 20 x^{2} + 135 x + 181 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 35 + \left(70 a + 5\right)\cdot 79 + \left(28 a + 33\right)\cdot 79^{2} + \left(44 a + 39\right)\cdot 79^{3} + \left(41 a + 13\right)\cdot 79^{4} + \left(27 a + 73\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 67 a + 47 + \left(8 a + 63\right)\cdot 79 + \left(50 a + 70\right)\cdot 79^{2} + \left(34 a + 54\right)\cdot 79^{3} + \left(37 a + 10\right)\cdot 79^{4} + \left(51 a + 59\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 75 a + 69 + \left(53 a + 75\right)\cdot 79 + \left(76 a + 29\right)\cdot 79^{2} + \left(53 a + 46\right)\cdot 79^{3} + \left(11 a + 23\right)\cdot 79^{4} + \left(31 a + 71\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 77 + 9\cdot 79 + 54\cdot 79^{2} + 63\cdot 79^{3} + 54\cdot 79^{4} + 25\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 25 + 27\cdot 79 + 75\cdot 79^{2} + 8\cdot 79^{3} + 74\cdot 79^{4} + 74\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 65 + \left(25 a + 54\right)\cdot 79 + \left(2 a + 52\right)\cdot 79^{2} + \left(25 a + 23\right)\cdot 79^{3} + \left(67 a + 60\right)\cdot 79^{4} + \left(47 a + 11\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,6)$
$(1,3)(2,6)(4,5)$
$(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,6)(4,5)$ $-2$
$3$ $2$ $(1,2)(3,6)$ $0$
$3$ $2$ $(1,6)(2,3)(4,5)$ $0$
$2$ $3$ $(1,4,2)(3,5,6)$ $-1$
$2$ $6$ $(1,5,2,3,4,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.