Properties

Label 2.3_5_11e2.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 3 \cdot 5 \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$1815= 3 \cdot 5 \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{4} - 11 x^{2} - 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 23 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 4 + 16\cdot 23 + 6\cdot 23^{2} + 19\cdot 23^{3} + 21\cdot 23^{4} + 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 8 + 22\cdot 23 + 17\cdot 23^{2} + 5\cdot 23^{3} + 9\cdot 23^{4} + 13\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 15 + 5\cdot 23^{2} + 17\cdot 23^{3} + 13\cdot 23^{4} + 9\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 19 + 6\cdot 23 + 16\cdot 23^{2} + 3\cdot 23^{3} + 23^{4} + 21\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(2,3)$ $0$
$2$ $4$ $(1,2,4,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.