Properties

Label 2.3_5_113.8t11.1c1
Dimension 2
Group $Q_8:C_2$
Conductor $ 3 \cdot 5 \cdot 113 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$1695= 3 \cdot 5 \cdot 113 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 7 x^{6} - 6 x^{5} + 13 x^{4} + 4 x^{3} + 30 x^{2} + 84 x + 49 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.3_5_113.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 75\cdot 139 + 31\cdot 139^{2} + 43\cdot 139^{3} + 53\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 52\cdot 139 + 103\cdot 139^{2} + 15\cdot 139^{3} + 132\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 + 71\cdot 139 + 131\cdot 139^{2} + 95\cdot 139^{3} + 134\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 86 + 113\cdot 139 + 110\cdot 139^{2} + 39\cdot 139^{3} + 73\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 87 + 115\cdot 139 + 40\cdot 139^{2} + 34\cdot 139^{3} + 74\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 102 + 49\cdot 139 + 131\cdot 139^{2} + 115\cdot 139^{3} + 14\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 123 + 110\cdot 139 + 101\cdot 139^{2} + 39\cdot 139^{3} + 28\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 124 + 106\cdot 139 + 43\cdot 139^{2} + 32\cdot 139^{3} + 45\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,5,6)(3,4,7,8)$
$(1,8,5,4)(2,7,6,3)$
$(1,4,5,8)(2,7,6,3)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-2$
$2$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$2$$2$$(1,5)(4,8)$$0$
$2$$2$$(1,6)(2,5)(3,4)(7,8)$$0$
$1$$4$$(1,4,5,8)(2,7,6,3)$$-2 \zeta_{4}$
$1$$4$$(1,8,5,4)(2,3,6,7)$$2 \zeta_{4}$
$2$$4$$(1,2,5,6)(3,4,7,8)$$0$
$2$$4$$(1,8,5,4)(2,7,6,3)$$0$
$2$$4$$(1,3,5,7)(2,8,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.