Properties

Label 2.3_5_11.8t17.3c2
Dimension 2
Group $C_4\wr C_2$
Conductor $ 3 \cdot 5 \cdot 11 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$165= 3 \cdot 5 \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + x^{6} + 2 x^{5} - 3 x^{4} - 2 x^{3} + x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd
Determinant: 1.3_5_11.4t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 269 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 52 + 39\cdot 269 + 148\cdot 269^{2} + 164\cdot 269^{3} + 60\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 60 + 178\cdot 269 + 199\cdot 269^{2} + 152\cdot 269^{3} + 180\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 70 + 90\cdot 269 + 188\cdot 269^{2} + 123\cdot 269^{3} + 265\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 73 + 25\cdot 269 + 98\cdot 269^{2} + 200\cdot 269^{3} + 195\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 128 + 88\cdot 269 + 56\cdot 269^{2} + 41\cdot 269^{3} + 179\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 130 + 246\cdot 269 + 231\cdot 269^{2} + 258\cdot 269^{3} + 263\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 145 + 70\cdot 269 + 16\cdot 269^{2} + 109\cdot 269^{3} + 186\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 150 + 68\cdot 269 + 137\cdot 269^{2} + 25\cdot 269^{3} + 13\cdot 269^{4} +O\left(269^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,6)(3,4)(5,7)$
$(2,4,6,3)$
$(1,2,7,4,8,6,5,3)$
$(2,6)(3,4)$
$(1,5,8,7)(2,3,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,6)(3,4)(5,7)$$-2$
$2$$2$$(2,6)(3,4)$$0$
$4$$2$$(1,3)(2,7)(4,8)(5,6)$$0$
$1$$4$$(1,7,8,5)(2,4,6,3)$$-2 \zeta_{4}$
$1$$4$$(1,5,8,7)(2,3,6,4)$$2 \zeta_{4}$
$2$$4$$(2,4,6,3)$$-\zeta_{4} + 1$
$2$$4$$(2,3,6,4)$$\zeta_{4} + 1$
$2$$4$$(1,8)(2,3,6,4)(5,7)$$\zeta_{4} - 1$
$2$$4$$(1,8)(2,4,6,3)(5,7)$$-\zeta_{4} - 1$
$2$$4$$(1,5,8,7)(2,4,6,3)$$0$
$4$$4$$(1,4,8,3)(2,7,6,5)$$0$
$4$$8$$(1,2,7,4,8,6,5,3)$$0$
$4$$8$$(1,4,5,2,8,3,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.