Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 269 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 52 + 39\cdot 269 + 148\cdot 269^{2} + 164\cdot 269^{3} + 60\cdot 269^{4} +O\left(269^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 60 + 178\cdot 269 + 199\cdot 269^{2} + 152\cdot 269^{3} + 180\cdot 269^{4} +O\left(269^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 70 + 90\cdot 269 + 188\cdot 269^{2} + 123\cdot 269^{3} + 265\cdot 269^{4} +O\left(269^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 73 + 25\cdot 269 + 98\cdot 269^{2} + 200\cdot 269^{3} + 195\cdot 269^{4} +O\left(269^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 128 + 88\cdot 269 + 56\cdot 269^{2} + 41\cdot 269^{3} + 179\cdot 269^{4} +O\left(269^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 130 + 246\cdot 269 + 231\cdot 269^{2} + 258\cdot 269^{3} + 263\cdot 269^{4} +O\left(269^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 145 + 70\cdot 269 + 16\cdot 269^{2} + 109\cdot 269^{3} + 186\cdot 269^{4} +O\left(269^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 150 + 68\cdot 269 + 137\cdot 269^{2} + 25\cdot 269^{3} + 13\cdot 269^{4} +O\left(269^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,6)(3,4)(5,7)$ |
| $(2,4,6,3)$ |
| $(1,2,7,4,8,6,5,3)$ |
| $(2,6)(3,4)$ |
| $(1,5,8,7)(2,3,6,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,8)(2,6)(3,4)(5,7)$ | $-2$ |
| $2$ | $2$ | $(2,6)(3,4)$ | $0$ |
| $4$ | $2$ | $(1,3)(2,7)(4,8)(5,6)$ | $0$ |
| $1$ | $4$ | $(1,7,8,5)(2,4,6,3)$ | $-2 \zeta_{4}$ |
| $1$ | $4$ | $(1,5,8,7)(2,3,6,4)$ | $2 \zeta_{4}$ |
| $2$ | $4$ | $(2,4,6,3)$ | $-\zeta_{4} + 1$ |
| $2$ | $4$ | $(2,3,6,4)$ | $\zeta_{4} + 1$ |
| $2$ | $4$ | $(1,8)(2,3,6,4)(5,7)$ | $\zeta_{4} - 1$ |
| $2$ | $4$ | $(1,8)(2,4,6,3)(5,7)$ | $-\zeta_{4} - 1$ |
| $2$ | $4$ | $(1,5,8,7)(2,4,6,3)$ | $0$ |
| $4$ | $4$ | $(1,4,8,3)(2,7,6,5)$ | $0$ |
| $4$ | $8$ | $(1,2,7,4,8,6,5,3)$ | $0$ |
| $4$ | $8$ | $(1,4,5,2,8,3,7,6)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.