Properties

Label 2.3_43_79.4t3.6
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 43 \cdot 79 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$10191= 3 \cdot 43 \cdot 79 $
Artin number field: Splitting field of $f= x^{8} - 37 x^{6} + 1876 x^{4} + 18759 x^{2} + 257049 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 28\cdot 181 + 112\cdot 181^{2} + 63\cdot 181^{3} + 40\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 152\cdot 181 + 49\cdot 181^{2} + 76\cdot 181^{3} + 43\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 + 116\cdot 181 + 147\cdot 181^{2} + 89\cdot 181^{3} + 47\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 42 + 16\cdot 181 + 143\cdot 181^{2} + 166\cdot 181^{3} + 98\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 139 + 164\cdot 181 + 37\cdot 181^{2} + 14\cdot 181^{3} + 82\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 155 + 64\cdot 181 + 33\cdot 181^{2} + 91\cdot 181^{3} + 133\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 156 + 28\cdot 181 + 131\cdot 181^{2} + 104\cdot 181^{3} + 137\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 174 + 152\cdot 181 + 68\cdot 181^{2} + 117\cdot 181^{3} + 140\cdot 181^{4} +O\left(181^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,7)(3,5,6,4)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.